2,530 research outputs found

    Simultaneous whole-animal 3D-imaging of neuronal activity using light field microscopy

    Get PDF
    3D functional imaging of neuronal activity in entire organisms at single cell level and physiologically relevant time scales faces major obstacles due to trade-offs between the size of the imaged volumes, and spatial and temporal resolution. Here, using light-field microscopy in combination with 3D deconvolution, we demonstrate intrinsically simultaneous volumetric functional imaging of neuronal population activity at single neuron resolution for an entire organism, the nematode Caenorhabditis elegans. The simplicity of our technique and possibility of the integration into epi-fluoresence microscopes makes it an attractive tool for high-speed volumetric calcium imaging.Comment: 25 pages, 7 figures, incl. supplementary informatio

    A Genetic Analysis of the Relationship Between Life-history Variation and Heat-shock Tolerance in Drosophila buzzatii

    Get PDF
    Although exposure to environmental stress is common in most populations, and the physiological effects of stress on individuals are well studied, the evolutionary importance of stress to populations is not well understood. To address multitrait responses to environmental change and potential constraints on character evolution, we analysed, in 100 isofemale lines of Drosophila buzzatii, the genetic relationships between resistance to a short heat shock and several life-history traits: survival in benign conditions, larval developmental time, fecundity and longevity. Estimates of heritability of larval thermotolerance were low, but significant, and all life-history traits varied significantly among isofemale lines. Several of these traits covaried significantly. Most correlations indicated positive life-history relationships, but males and females from lines where female fecundity was higher developed more slowly in the absence of stress, which is a negative life-history relationship. The stress reduced or negated many trait associations, and showed one additional relationship; more larvae from lines that developed fast at 25°C survived to adult after stress than did larvae from slow developing lines. These shifts in fitness relationships, when a single stress bout is applied, suggest that even small increases in environmental stress can have profound effects on evolutionary relationships among life-history traits

    Wolbachia Induces Male-Specific Mortality in the Mosquito Culex pipiens (LIN Strain)

    Get PDF
    Background: Wolbachia are maternally inherited endosymbionts that infect a diverse range of invertebrates, including insects, arachnids, crustaceans and filarial nematodes. Wolbachia are responsible for causing diverse reproductive alterations in their invertebrate hosts that maximize their transmission to the next generation. Evolutionary theory suggests that due to maternal inheritance, Wolbachia should evolve toward mutualism in infected females, but strict maternal inheritance means there is no corresponding force to select for Wolbachia strains that are mutualistic in males. Methodology/Principal findings: Using cohort life-table analysis, we demonstrate that in the mosquito Culex pipiens (LIN strain), Wolbachia-infected females show no fitness costs due to infection. However, Wolbachia induces up to a 30% reduction in male lifespan. Conclusions/significance: These results indicate that the Wolbachia infection of the Culex pipiens LIN strain is virulent in a sex-specific manner. Under laboratory situations where mosquitoes generally mate at young ages, Wolbachia strains that reduce male survival could evolve by drift because increased mortality in older males is not a significant selective force

    Mouse models for preeclampsia: disruption of redox-regulated signaling

    Get PDF
    The concept that oxidative stress contributes to the development of human preeclampsia has never been tested in genetically-defined animal models. Homozygous deletion of catechol-Omethyl transferase (Comt-/-) in pregnant mice leads to human preeclampsia-like symptoms (high blood pressure, albuminurea and preterm birth) resulting from extensive vasculo-endothelial pathology, primarily at the utero-fetal interface where maternal cardiac output is dramatically increased during pregnancy. Comt converts estradiol to 2-methoxyestradiol 2 (2ME2) which counters angiogenesis by depleting hypoxia inducible factor-1 alpha (HIF-1 alpha) at late pregnancy. We propose that in wild type (Comt++) pregnant mice, 2ME2 destabilizes HIF-1 alpha by inhibiting mitochondrial superoxide dismutase (MnSOD). Thus, 2ME2 acts as a pro-oxidant, disrupting redox-regulated signaling which blocks angiogenesis in wild type (WT) animals in physiological pregnancy. Further, we suggest that a lack of this inhibition under normoxic conditions in mutant animals (Comt-/-) stabilises HIF-1 alpha by inactivating prolyl hydroxlases (PHD). We predict that a lack of inhibition of MnSOD, leading to persistent accumulation of HIF-1 alpha, would trigger inflammatory infiltration and endothelial damage in mutant animals. Critical tests of this hypothesis would be to recreate preeclampsia symptoms by inducing oxidative stress in WT animals or to ameliorate by treating mutant mice with Mn-SOD-catalase mimetics or activators of PHD

    Restricted Genetic Diversity of HIV-1 Subtype C Envelope Glycoprotein from Perinatally Infected Zambian Infants

    Get PDF
    Background: Mother-to-child transmission of HIV-1 remains a significant problem in the resource-constrained settings where anti-retroviral therapy is still not widely available. Understanding the earliest events during HIV-1 transmission and characterizing the newly transmitted or founder virus is central to intervention efforts. In this study, we analyzed the viral env quasispecies of six mother-infant transmission pairs (MIPs) and characterized the genetic features of envelope glycoprotein that could influence HIV-1 subtype C perinatal transmission. Methodology and Findings: The V1-V5 region of env was amplified from 6 MIPs baseline samples and 334 DNA sequences in total were analyzed. A comparison of the viral population derived from the mother and infant revealed a severe genetic bottleneck occurring during perinatal transmission, which was characterized by low sequence diversity in the infant. Phylogenetic analysis indicates that most likely in all our infant subjects a single founder virus was responsible for establishing infection. Furthermore, the newly transmitted viruses from the infant had significantly fewer potential N-linked glycosylation sites in Env V1-V5 region and showed a propensity to encode shorter variable loops compared to the nontransmitted viruses. In addition, a similar intensity of selection was seen between mothers and infants with a higher rate of synonymous (dS) compared to nonsynonymous (dN) substitutions evident (dN/dS\u3c1). Conclusions: Our results indicate that a strong genetic bottleneck occurs during perinatal transmission of HIV-1 subtype C. This is evident through population diversity and phylogenetic patterns where a single viral variant appears to be responsible for infection in the infants. As a result the newly transmitted viruses are less diverse and harbored significantly less glycosylated envelope. This suggests that viruses with the restricted glycosylation in envelope glycoprotein appeared to be preferentially transmitted during HIV-1 subtype C perinatal transmission. In addition, our findings also indicated that purifying selection appears to predominate in shaping the early intrahost evolution of HIV-1 subtype C envelope sequences

    Characterization and Comparison of 2 Distinct Epidemic Community-Associated Methicillin-Resistant Staphylococcus aureus Clones of ST59 Lineage.

    Get PDF
    Sequence type (ST) 59 is an epidemic lineage of community-associated (CA) methicillin-resistant Staphylococcus aureus (MRSA) isolates. Taiwanese CA-MRSA isolates belong to ST59 and can be grouped into 2 distinct clones, a virulent Taiwan clone and a commensal Asian-Pacific clone. The Taiwan clone carries the Panton-Valentine leukocidin (PVL) genes and the staphylococcal chromosomal cassette mec (SCCmec) VT, and is frequently isolated from patients with severe disease. The Asian-Pacific clone is PVL-negative, carries SCCmec IV, and a frequent colonizer of healthy children. Isolates of both clones were characterized by their ability to adhere to respiratory A549 cells, cytotoxicity to human neutrophils, and nasal colonization of a murine and murine sepsis models. Genome variation was determined by polymerase chain reaction of selected virulence factors and by multi-strain whole genome microarray. Additionally, the expression of selected factors was compared between the 2 clones. The Taiwan clone showed a much higher cytotoxicity to the human neutrophils and caused more severe septic infections with a high mortality rate in the murine model. The clones were indistinguishable in their adhesion to A549 cells and persistence of murine nasal colonization. The microarray data revealed that the Taiwan clone had lost the ø3-prophage that integrates into the β-hemolysin gene and includes staphylokinase- and enterotoxin P-encoding genes, but had retained the genes for human immune evasion, scn and chps. Production of the virulence factors did not differ significantly in the 2 clonal groups, although more α-toxin was expressed in Taiwan clone isolates from pneumonia patients. In conclusion, the Taiwan CA-MRSA clone was distinguished by enhanced virulence in both humans and an animal infection model. The evolutionary acquisition of PVL, the higher expression of α-toxin, and possibly the loss of a large portion of the β-hemolysin-converting prophage likely contribute to its higher pathogenic potential than the Asian-Pacific clone

    Evidence for Metabolic Provisioning by a Common Invertebrate Endosymbiont, Wolbachia pipientis, during Periods of Nutritional Stress

    Get PDF
    Wolbachia are ubiquitous inherited endosymbionts of invertebrates that invade host populations by modifying host reproductive systems. However, some strains lack the ability to impose reproductive modification and yet are still capable of successfully invading host populations. To explain this paradox, theory predicts that such strains should provide a fitness benefit, but to date none has been detected. Recently completed genome sequences of different Wolbachia strains show that these bacteria may have the genetic machinery to influence iron utilization of hosts. Here we show that Wolbachia infection can confer a positive fecundity benefit for Drosophila melanogaster reared on iron-restricted or -overloaded diets. Furthermore, iron levels measured from field-collected flies indicated that nutritional conditions in the field were overall comparable to those of flies reared in the laboratory on restricted diets. These data suggest that Wolbachia may play a previously unrecognized role as nutritional mutualists in insects

    Functional Characterization of the Frost Gene in Drosophila melanogaster: Importance for Recovery from Chill Coma

    Get PDF
    BACKGROUND: Almost all animals, including insects, need to adapt to temperature fluctuations. The molecular basis of thermal adaptation is not well understood, although a number of candidate genes have been proposed. However, a functional link between candidate genes and thermal tolerance has rarely been established. The gene Frost (Fst) was first discovered when Drosophila flies were exposed to cold stress, but the biological function(s) of Fst has so far not been characterized. Because Fst is up-regulated after a cold stress, we tested whether it was essential for chill-coma recovery. METHODOLOGY/PRINCIPAL FINDINGS: A marked increase in Fst expression was detected (by RT-PCR) during recovery from cold stress, peaking at 42-fold after 2 h. The GAL4/UAS system was used to knock down expression of Fst and recovery ability was assessed in transgenic adults following 12 h of chill coma at 0 degrees C. The ability to recover from cold stress (short-, medium- and long-term) was significantly altered in the transgenic adults that had Fst silenced. These findings show that Fst plays an essential role in the recovery from chill coma in both males and females. CONCLUSIONS/SIGNIFICANCE: The Frost gene is essential for cold tolerance in Drosophila melanogaster and may play an important role in thermal adaptation

    The Endosymbiotic Bacterium Wolbachia Induces Resistance to Dengue Virus in Aedes aegypti

    Get PDF
    Genetic strategies that reduce or block pathogen transmission by mosquitoes have been proposed as a means of augmenting current control measures to reduce the growing burden of vector-borne diseases. The endosymbiotic bacterium Wolbachia has long been promoted as a potential vehicle for introducing disease-resistance genes into mosquitoes, thereby making them refractory to the human pathogens they transmit. Given the large overlap in tissue distribution and intracellular localization between Wolbachia and dengue virus in mosquitoes, we conducted experiments to characterize their interactions. Our results show that Wolbachia inhibits viral replication and dissemination in the main dengue vector, Aedes aegypti. Moreover, the virus transmission potential of Wolbachia-infected Ae. aegypti was significantly diminished when compared to wild-type mosquitoes that did not harbor Wolbachia. At 14 days post-infection, Wolbachia completely blocked dengue transmission in at least 37.5% of Ae. aegypti mosquitoes. We also observed that this Wolbachia-mediated viral interference was associated with an elevated basal immunity and increased longevity in the mosquitoes. These results underscore the potential usefulness of Wolbachia-based control strategies for population replacement
    • …
    corecore