536 research outputs found

    Protein kinase A (PKA) phosphorylation of Shp2 inhibits its phosphatase activity and modulates ligand specificity.

    Get PDF
    Pathological cardiac hypertrophy (an increase in cardiac mass resulting from stress-induced cardiac myocyte growth) is a major factor underlying heart failure. Src homology 2 domain-containing phosphatase (Shp2) is critical for cardiac function as mutations resulting in loss of Shp2 catalytic activity are associated with congenital cardiac defects and hypertrophy. We have identified a novel mechanism of Shp2 inhibition that may promote cardiac hypertrophy. We demonstrate that Shp2 is a component of the A-kinase anchoring protein (AKAP)-Lbc complex. AKAP-Lbc facilitates protein kinase A (PKA) phosphorylation of Shp2, which inhibits Shp2 phosphatase activity. We have identified two key amino acids in Shp2 that are phosphorylated by PKA: Thr73 contributes a helix-cap to helix αB within the N-terminal SH2 domain of Shp2, whereas Ser189 occupies an equivalent position within the C-terminal SH2 domain. Utilizing double mutant PKA phospho-deficient (T73A/S189A) and phospho-mimetic (T73D/S189D) constructs, in vitro binding assays, and phosphatase activity assays, we demonstrate that phosphorylation of these residues disrupts Shp2 interaction with tyrosine-phosphorylated ligands and inhibits its protein tyrosine phosphatase activity. Overall, our data indicate that AKAP-Lbc integrates PKA and Shp2 signaling in the heart and that AKAP-Lbc-associated Shp2 activity is reduced in hypertrophic hearts in response to chronic β-adrenergic stimulation and PKA activation. Thus, while induction of cardiac hypertrophy is a multifaceted process, inhibition of Shp2 activity through AKAP-Lbc-anchored PKA is a previously unrecognized mechanism that may promote this compensatory response

    Identification of prolylcarboxypeptidase as the cell matrix-associated prekallikrein activator

    Get PDF
    Investigations determined that the cell matrix-associated prekallikrein (PK) activator is prolylearboxypeptidase. PK activation on human umbilical vein endothelial cell (HUVEC) matrix is inhibited by antipain (IC50 = 50 muM) but not antifactor XIIa antibody, 3 mM benzamidine, 5 mM iodoacetic acid or iodoacetamide, or 3 mM N-ethylmaleimide. Corn trypsin inhibitor (IC50 = 100 nM) or Fmoc-aminoacylpyrrolidine-2-nitrile (IC50 = 100 muM) blocks matrix-associated PK activation. Angiotensin II (IC50 = 100 muM) or bradykinin (IC50 = 3 mM), but not angiotensin 1-7 or bradykinin 1-5, inhibits matrix-associated PK activation. ECV304 cell matrix PK activator also is blocked by 100 muM angiotensin II, 1 muM corn trypsin inhibitor, and 50 muM antipain, but not angiotensin 1-7. 1 mM angiotensin 11 or 300 muM Fmoc-aminoacylpyrrolidine-2-nitrile indirectly blocks plasminogen activation by inhibiting kallikrein formation for single chain urokinase activation. On immunoblot, prolylcarboxypeptidase antigen is associated with HUVEC matrix. These studies indicate that prolylearboxypeptidase is the matrix PK activator. (C) 2002 Federation of European Biochemical Societies. Published by Elsevier Science B.V. All rights reserved.Univ Michigan, Div Hematol & Oncol, Dept Internal Med, Ann Arbor, MI 48109 USAUniversidade Federal de São Paulo, Dept Bioquim, São Paulo, BrazilUniv Michigan, Dept Pathol, Ann Arbor, MI 48109 USAUniversidade Federal de São Paulo, Dept Bioquim, São Paulo, BrazilWeb of Scienc

    Carboxypeptidase-M is regulated by lipids and CSFs in macrophages and dendritic cells and expressed selectively in tissue granulomas and foam cells

    Get PDF
    Granulomatous inflammations, characterized by the presence of activated macrophages (MAs) forming epithelioid cell (EPC) clusters, are usually easy to recognize. However, in ambiguous cases the use of a MA marker that expresses selectively in EPCs may be needed. Here, we report that carboxypeptidase-M (CPM), a MA-differentiation marker, is preferentially induced in EPCs of all granuloma types studied, but not in resting MAs. As CPM is not expressed constitutively in MAs, this allows utilization of CPM-immunohistochemistry in diagnostics of minute granuloma detection when dense non-granulomatous MAs are also present. Despite this rule, hardly any detectable CPM was found in advanced/active tubercle caseous disease, albeit in early tuberculosis granuloma, MAs still expressed CPM. Indeed, in vitro both the CPM-protein and -mRNA became downregulated when MAs were infected with live mycobacteria. In vitro, MA-CPM transcript is neither induced remarkably by interferon-γ, known to cause classical MA activation, nor by IL-4, an alternative MA activator. Instead, CPM is selectively expressed in lipid-laden MAs, including the foam cells of atherosclerotic plaques, xanthomatous lesions and lipid pneumonias. By using serum, rich in lipids, and low-density lipoprotein (LDL) or VLDL, CPM upregulation could be reproduced in vitro in monocyte-derived MAs both at transcriptional and protein levels, and the increase is repressed under lipid-depleted conditions. The microarray analyses support the notion that CPM induction correlates with a robust progressive increase in CPM gene expression during monocyte to MA maturation and dendritic cell (DC) differentiation mediated by granulocyte–MA-colony-stimulating factor+IL-4. M-CSF alone also induced CPM. These results collectively indicate that CPM upregulation in MAs is preferentially associated with increased lipid uptake, and exposure to CSF, features of EPCs, also. Therefore, CPM-immunohistochemistry is useful for granuloma and foam MA detections in tissue sections. Furthermore, the present data offer CPM for the first time to be a novel marker and cellular player in lipid uptake and/or metabolism of MAs by promoting foam cell formation

    Perspectives on the Trypanosoma cruzi-host cell receptor interaction

    Get PDF
    Chagas disease is caused by the parasite Trypanosoma cruzi. The critical initial event is the interaction of the trypomastigote form of the parasite with host receptors. This review highlights recent observations concerning these interactions. Some of the key receptors considered are those for thromboxane, bradykinin, and for the nerve growth factor TrKA. Other important receptors such as galectin-3, thrombospondin, and laminin are also discussed. Investigation into the molecular biology and cell biology of host receptors for T. cruzi may provide novel therapeutic targets

    Crystal structure of X-prolyl aminopeptidase from Caenorhabditis elegans: A cytosolic enzyme with a di-nuclear active site.

    Get PDF
    Eukaryotic aminopeptidase P1 (APP1), also known as X-prolyl aminopeptidase (XPNPEP1) in human tissues, is a cytosolic exopeptidase that preferentially removes amino acids from the N-terminus of peptides possessing a penultimate N-terminal proline residue. The enzyme has an important role in the catabolism of proline containing peptides since peptide bonds adjacent to the imino acid proline are resistant to cleavage by most peptidases. We show that recombinant and catalytically active Caenorhabditis elegans APP-1 is a dimer that uses dinuclear zinc at the active site and, for the first time, we provide structural information for a eukaryotic APP-1 in complex with the inhibitor, apstatin. Our analysis reveals that C. elegans APP-1 shares similar mode of substrate binding and a common catalytic mechanism with other known X-prolyl aminopeptidases
    • …
    corecore