36 research outputs found

    Quantifying the relative roles of selective and neutral processes in defining eukaryotic microbial communities

    Get PDF
    We have a limited understanding of the relative contributions of different processes that regulate microbial communities, which are crucial components of both natural and agricultural ecosystems. The contributions of selective and neutral processes in defining community composition are often confounded in field studies because as one moves through space, environments also change. Managed ecosystems provide an excellent opportunity to control for this and evaluate the relative strength of these processes by minimising differences between comparable niches separated at different geographic scales. We use next-generation sequencing to characterize the variance in fungal communities inhabiting adjacent fruit, soil and bark in comparable vineyards across 1000 kms in New Zealand. By compartmentalizing community variation, we reveal that niche explains at least four times more community variance than geographic location. We go beyond merely demonstrating that different communities are found in both different niches and locations by quantifying the forces that define these patterns. Overall, selection unsurprisingly predominantly shapes these microbial communities, but we show the balance of neutral processes also have a significant role in defining community assemblage in eukaryotic microbes

    TRY plant trait database - enhanced coverage and open access

    Get PDF
    Plant traits-the morphological, anatomical, physiological, biochemical and phenological characteristics of plants-determine how plants respond to environmental factors, affect other trophic levels, and influence ecosystem properties and their benefits and detriments to people. Plant trait data thus represent the basis for a vast area of research spanning from evolutionary biology, community and functional ecology, to biodiversity conservation, ecosystem and landscape management, restoration, biogeography and earth system modelling. Since its foundation in 2007, the TRY database of plant traits has grown continuously. It now provides unprecedented data coverage under an open access data policy and is the main plant trait database used by the research community worldwide. Increasingly, the TRY database also supports new frontiers of trait-based plant research, including the identification of data gaps and the subsequent mobilization or measurement of new data. To support this development, in this article we evaluate the extent of the trait data compiled in TRY and analyse emerging patterns of data coverage and representativeness. Best species coverage is achieved for categorical traits-almost complete coverage for 'plant growth form'. However, most traits relevant for ecology and vegetation modelling are characterized by continuous intraspecific variation and trait-environmental relationships. These traits have to be measured on individual plants in their respective environment. Despite unprecedented data coverage, we observe a humbling lack of completeness and representativeness of these continuous traits in many aspects. We, therefore, conclude that reducing data gaps and biases in the TRY database remains a key challenge and requires a coordinated approach to data mobilization and trait measurements. This can only be achieved in collaboration with other initiatives

    Contrasting effects of defaunation on aboveground carbon storage across the global tropics

    Get PDF
    Defaunation is causing declines of large-seeded animal-dispersed trees in tropical forests worldwide, but whether and how these declines will affect carbon storage across this biome is unclear. Here we show, using a pan-tropical dataset, that simulated declines of large-seeded animal-dispersed trees have contrasting effects on aboveground carbon stocks across Earth’s tropical forests. In our simulations, African, Neotropical and South Asian forests which have high proportions of animal-dispersed species consistently show carbon losses (2-12%), but Southeast Asian and Australian forests where there are more abiotically-dispersed species show little to no carbon losses or marginal gains (±1%). These patterns result primarily from changes in wood volume, and are underlain by consistent relationships in our empirical data (~2100 species), wherein, large-seeded animal-dispersed species are larger as adults than small-seeded animal-dispersed species, but are smaller than abiotically-dispersed species. Thus, floristic differences and distinct dispersal mode-seed size-adult size combinations can drive contrasting regional responses to defaunation

    Is the meiofauna a good indicator for climate change and anthropogenic impacts?

    Get PDF
    Our planet is changing, and one of the most pressing challenges facing the scientific community revolves around understanding how ecological communities respond to global changes. From coastal to deep-sea ecosystems, ecologists are exploring new areas of research to find model organisms that help predict the future of life on our planet. Among the different categories of organisms, meiofauna offer several advantages for the study of marine benthic ecosystems. This paper reviews the advances in the study of meiofauna with regard to climate change and anthropogenic impacts. Four taxonomic groups are valuable for predicting global changes: foraminifers (especially calcareous forms), nematodes, copepods and ostracods. Environmental variables are fundamental in the interpretation of meiofaunal patterns and multistressor experiments are more informative than single stressor ones, revealing complex ecological and biological interactions. Global change has a general negative effect on meiofauna, with important consequences on benthic food webs. However, some meiofaunal species can be favoured by the extreme conditions induced by global change, as they can exhibit remarkable physiological adaptations. This review highlights the need to incorporate studies on taxonomy, genetics and function of meiofaunal taxa into global change impact research

    TRY plant trait database - enhanced coverage and open access

    Get PDF
    Plant traits—the morphological, anatomical, physiological, biochemical and phenological characteristics of plants—determine how plants respond to environmental factors, affect other trophic levels, and influence ecosystem properties and their benefits and detriments to people. Plant trait data thus represent the basis for a vast area of research spanning from evolutionary biology, community and functional ecology, to biodiversity conservation, ecosystem and landscape management, restoration, biogeography and earth system modelling. Since its foundation in 2007, the TRY database of plant traits has grown continuously. It now provides unprecedented data coverage under an open access data policy and is the main plant trait database used by the research community worldwide. Increasingly, the TRY database also supports new frontiers of trait‐based plant research, including the identification of data gaps and the subsequent mobilization or measurement of new data. To support this development, in this article we evaluate the extent of the trait data compiled in TRY and analyse emerging patterns of data coverage and representativeness. Best species coverage is achieved for categorical traits—almost complete coverage for ‘plant growth form’. However, most traits relevant for ecology and vegetation modelling are characterized by continuous intraspecific variation and trait–environmental relationships. These traits have to be measured on individual plants in their respective environment. Despite unprecedented data coverage, we observe a humbling lack of completeness and representativeness of these continuous traits in many aspects. We, therefore, conclude that reducing data gaps and biases in the TRY database remains a key challenge and requires a coordinated approach to data mobilization and trait measurements. This can only be achieved in collaboration with other initiatives

    Drivers of salamander extirpation mediated by Batrachochytrium salamandrivorans

    Full text link
    The recent arrival of Batrachochytrium salamandrivorans in Europe was followed by rapid expansion of its geographical distribution and host range, confirming the unprecedented threat that this chytrid fungus poses to western Palaearctic amphibians. Mitigating this hazard requires a thorough understanding of the pathogen’s disease ecology that is driving the extinction process. Here, we monitored infection, disease and host population dynamics in a Belgian fire salamander (Salamandra salamandra) population for two years immediately after the first signs of infection. We show that arrival of this chytrid is associated with rapid population collapse without any sign of recovery, largely due to lack of increased resistance in the surviving salamanders and a demographic shift that prevents compensation for mortality. The pathogen adopts a dual transmission strategy, with environmentally resistant non-motile spores in addition to the motile spores identified in its sister species B. dendrobatidis. The fungus retains its virulence not only in water and soil, but also in anurans and less susceptible urodelan species that function as infection reservoirs. The combined characteristics of the disease ecology suggest that further expansion of this fungus will behave as a ‘perfect storm’ that is able to rapidly extirpate highly susceptible salamander populations across Europe
    corecore