62 research outputs found

    DNA methylation in human sperm: a systematic review

    Get PDF
    BACKGROUND Studies in non-human mammals suggest that environmental factors can influence spermatozoal DNA methylation, and some research suggests that spermatozoal DNA methylation is also implicated in conditions such as subfertility and imprinting disorders in the offspring. Together with an increased availability of cost-effective methods of interrogating DNA methylation, this premise has led to an increasing number of studies investigating the DNA methylation landscape of human spermatozoa. However, how the human spermatozoal DNA methylome is influenced by environmental factors is still unclear, as is the role of human spermatozoal DNA methylation in subfertility and in influencing offspring health. OBJECTIVE AND RATIONALE The aim of this systematic review was to critically appraise the quality of the current body of literature on DNA methylation in human spermatozoa, summarize current knowledge and generate recommendations for future research. SEARCH METHODS A comprehensive literature search of the PubMed, Web of Science and Cochrane Library databases was conducted using the search terms ‘semen’ OR ‘sperm’ AND ‘DNA methylation’. Publications from 1 January 2003 to 2 March 2020 that studied human sperm and were written in English were included. Studies that used sperm DNA methylation to develop methodologies or forensically identify semen were excluded, as were reviews, commentaries, meta-analyses or editorial texts. The Grading of Recommendations, Assessment, Development and Evaluations (GRADE) criteria were used to objectively evaluate quality of evidence in each included publication. OUTCOMES The search identified 446 records, of which 135 were included in the systematic review. These 135 studies were divided into three groups according to area of research; 56 studies investigated the influence of spermatozoal DNA methylation on male fertility and abnormal semen parameters, 20 studies investigated spermatozoal DNA methylation in pregnancy outcomes including offspring health and 59 studies assessed the influence of environmental factors on spermatozoal DNA methylation. Findings from studies that scored as ‘high’ and ‘moderate’ quality of evidence according to GRADE criteria were summarized. We found that male subfertility and abnormal semen parameters, in particular oligozoospermia, appear to be associated with abnormal spermatozoal DNA methylation of imprinted regions. However, no specific DNA methylation signature of either subfertility or abnormal semen parameters has been convincingly replicated in genome-scale, unbiased analyses. Furthermore, although findings require independent replication, current evidence suggests that the spermatozoal DNA methylome is influenced by cigarette smoking, advanced age and environmental pollutants. Importantly however, from a clinical point of view, there is no convincing evidence that changes in spermatozoal DNA methylation influence pregnancy outcomes or offspring health. WIDER IMPLICATIONS Although it appears that the human sperm DNA methylome can be influenced by certain environmental and physiological traits, no findings have been robustly replicated between studies. We have generated a set of recommendations that would enhance the reliability and robustness of findings of future analyses of the human sperm methylome. Such studies will likely require multicentre collaborations to reach appropriate sample sizes, and should incorporate phenotype data in more complex statistical models

    Genetic variation at mouse and human ribosomal DNA influences associated epigenetic states

    Get PDF
    Background Ribosomal DNA (rDNA) displays substantial inter-individual genetic variation in human and mouse. A systematic analysis of how this variation impacts epigenetic states and expression of the rDNA has thus far not been performed. Results Using a combination of long- and short-read sequencing, we establish that 45S rDNA units in the C57BL/6J mouse strain exist as distinct genetic haplotypes that influence the epigenetic state and transcriptional output of any given unit. DNA methylation dynamics at these haplotypes are dichotomous and life-stage specific: at one haplotype, the DNA methylation state is sensitive to the in utero environment, but refractory to post-weaning influences, whereas other haplotypes entropically gain DNA methylation during aging only. On the other hand, individual rDNA units in human show limited evidence of genetic haplotypes, and hence little discernible correlation between genetic and epigenetic states. However, in both species, adjacent units show similar epigenetic profiles, and the overall epigenetic state at rDNA is strongly positively correlated with the total rDNA copy number. Analysis of different mouse inbred strains reveals that in some strains, such as 129S1/SvImJ, the rDNA copy number is only approximately 150 copies per diploid genome and DNA methylation levels are < 5%. Conclusions Our work demonstrates that rDNA-associated genetic variation has a considerable influence on rDNA epigenetic state and consequently rRNA expression outcomes. In the future, it will be important to consider the impact of inter-individual rDNA (epi)genetic variation on mammalian phenotypes and diseases

    CONFIRM: a double-blind, placebo controlled phase III clinical trial investigating the effect of nivolumab in patients with relapsed mesothelioma: study protocol for a randomised controlled trial

    Get PDF
    Background: Mesothelioma is an incurable, apoptosis-resistant cancer caused in most cases by previous exposure to asbestos and is increasing in incidence. It represents a growing health burden but remains under-researched, with limited treatment options. Early promising signals of activity relating to both PD-L1- and PD-1-targeted treatment in mesothelioma implicate a dependency of mesothelioma on this immune checkpoint. There is a need to evaluate checkpoint inhibitors in patients with relapsed mesothelioma where treatment options are limited. Methods: The addition of 12 months of nivolumab (anti-PD1 antibody) to standard practice will be conducted in the UK using a randomised, placebo-controlled phase III trial (the Cancer Research UK CONFIRM trial). A total of 336 patients with pleural or peritoneal mesothelioma who have received at least two prior lines of therapy will be recruited from UK secondary care sites. Patients will be randomised 2:1 (nivolumab:placebo), stratified according to epithelioid/non-epithelioid, to receive either 240 mg nivolumab monotherapy or saline placebo as a 30-min intravenous infusion. Treatment will be for up to 12 months. We will determine whether the use of nivolumab increases overall survival (the primary efficacy endpoint). Secondary endpoints will include progression-free survival, objective response rate, toxicity, quality of life and cost-effectiveness. Analysis will be performed according to the intention-to-treat principle using a Cox regression analysis for the primary endpoint (and for other time-to-event endpoints). Discussion: The outcome of this trial will provide evidence of the potential benefit of the use of nivolumab in the treatment of relapsed mesothelioma. If found to be clinically effective, safe and cost-effective it is likely to become the new standard of care in the UK

    Genetic variation at mouse and human ribosomal DNA influences associated epigenetic states

    Get PDF
    Background Ribosomal DNA (rDNA) displays substantial inter-individual genetic variation in human and mouse. A systematic analysis of how this variation impacts epigenetic states and expression of the rDNA has thus far not been performed. Results Using a combination of long- and short-read sequencing, we establish that 45S rDNA units in the C57BL/6J mouse strain exist as distinct genetic haplotypes that influence the epigenetic state and transcriptional output of any given unit. DNA methylation dynamics at these haplotypes are dichotomous and life-stage specific: at one haplotype, the DNA methylation state is sensitive to the in utero environment, but refractory to post-weaning influences, whereas other haplotypes entropically gain DNA methylation during aging only. On the other hand, individual rDNA units in human show limited evidence of genetic haplotypes, and hence little discernible correlation between genetic and epigenetic states. However, in both species, adjacent units show similar epigenetic profiles, and the overall epigenetic state at rDNA is strongly positively correlated with the total rDNA copy number. Analysis of different mouse inbred strains reveals that in some strains, such as 129S1/SvImJ, the rDNA copy number is only approximately 150 copies per diploid genome and DNA methylation levels are < 5%. Conclusions Our work demonstrates that rDNA-associated genetic variation has a considerable influence on rDNA epigenetic state and consequently rRNA expression outcomes. In the future, it will be important to consider the impact of inter-individual rDNA (epi)genetic variation on mammalian phenotypes and diseases

    Concomitant treatment of brain metastasis with Whole Brain Radiotherapy [WBRT] and Temozolomide [TMZ] is active and improves Quality of Life

    Get PDF
    BACKGROUND: Brain metastases (BM) represent one of the most frequent complications related to cancer, and their treatment continues to evolve. We have evaluated the activity, toxicity and the impact on Quality of Life (QoL) of a concomitant treatment with whole brain radiotherapy (WBRT) and Temozolomide (TMZ) in patients with brain metastases from solid tumors in a prospective Simon two stage study. METHODS: Fifty-nine patients were enrolled and received 30 Gy WBRT with concomitant TMZ (75 mg/m2/day) for ten days, and subsequently TMZ (150 mg/m2/day) for up to six cycles. The primary end points were clinical symptoms and radiologic response. RESULTS: Five patients had a complete response, 21 patients had a partial response, while 18 patients had stable disease. The overall response rate (45%) exceeded the target activity per study design. The median time to progression was 9 months. Median overall survival was 13 months. The most frequent toxicities included grade 3 neutropenia (15%) and anemia (13%), and only one patient developed a grade 4 thrombocytopenia. Age, Karnofsky performance status, presence of extracranial metastases and the recursive partitioning analysis (RPA) were found to be predictive factors for response in patients. Overall survival (OS) and progression-free survival (PFS) were dependent on age and on the RPA class. CONCLUSION: We conclude that this treatment is well tolerated, with an encouraging objective response rate, and a significant improvement in quality of life (p < 0.0001) demonstrated by FACT-G analysis. All patients answered the questionnaires and described themselves as 'independent' and able to act on their own initiatives. Our study found a high level of satisfaction for QoL, this provides useful information to share with patients in discussions regarding chemotherapy treatment of these lesions

    Climate Change and the Geographic Distribution of Infectious Diseases

    Get PDF
    Our ability to predict the effects of climate change on the spread of infectious diseases is in its infancy. Numerous, and in some cases conflicting, predictions have been developed, principally based on models of biological processes or mapping of current and historical disease statistics. Current debates on whether climate change, relative to socioeconomic determinants, will be a major influence on human disease distributions are useful to help identify research needs but are probably artificially polarized. We have at least identified many of the critical geophysical constraints, transport opportunities, biotic requirements for some disease systems, and some of the socioeconomic factors that govern the process of migration and establishment of parasites and pathogens. Furthermore, we are beginning to develop a mechanistic understanding of many of these variables at specific sites. Better predictive understanding will emerge in the coming years from analyses regarding how these variables interact with each other

    SPIRE - combining SGI-110 with cisplatin and gemcitabine chemotherapy for solid malignancies including bladder cancer: study protocol for a phase Ib/randomised IIa open label clinical trial

    Get PDF
    Background Urothelial bladder cancer (UBC) accounts for 10,000 new diagnoses and 5000 deaths annually in the UK (Cancer Research UK, http://www.cancerresearchuk.org/health-professional/cancer-statistics/statistics-by-cancer-type/bladder-cancer, Cancer Research UK, Accessed 26 Mar 2018). Cisplatin-based chemotherapy is standard of care therapy for UBC for both palliative first-line treatment of advanced/metastatic disease and radical neoadjuvant treatment of localised muscle invasive bladder cancer. However, cisplatin resistance remains a critical cause of treatment failure and a barrier to therapeutic advance in UBC. Based on supportive pre-clinical data, we hypothesised that DNA methyltransferase inhibition would circumvent cisplatin resistance in UBC and potentially other cancers. Methods The addition of SGI-110 (guadecitabine, a DNA methyltransferase inhibitor) to conventional doublet therapy of gemcitabine and cisplatin (GC) is being tested within the phase Ib/IIa SPIRE clinical trial. SPIRE incorporates an initial, modified rolling six-dose escalation phase Ib design of up to 36 patients with advanced solid tumours followed by a 20-patient open-label randomised controlled dose expansion phase IIa component as neoadjuvant treatment for UBC. Patients are being recruited from UK secondary care sites. The dose escalation phase will determine a recommended phase II dose (RP2D, primary endpoint) of SGI-110, by subcutaneous injection, on days 1–5 for combination with GC at conventional doses (cisplatin 70 mg/m2, IV infusion, day 8; gemcitabine 1000 mg/m2, IV infusion, days 8 and 15) in every 21-day cycle. In the dose expansion phase, patients will be randomised 1:1 to GC with or without SGI-110 at the proposed RP2D. Secondary endpoints will include toxicity profiles, SGI-110 pharmacokinetics and pharmacodynamic biomarkers, and pathological complete response rates in the dose expansion phase. Analyses will not be powered for formal statistical comparisons and descriptive statistics will be used to describe rates of toxicity, efficacy and translational endpoints by treatment arm. Discussion SPIRE will provide evidence for whether SGI-110 in combination with GC chemotherapy is safe and biologically effective prior to future phase II/III trials as a neoadjuvant therapy for UBC and potentially in other cancers treated with GC

    Macrophages mediate the anti-tumor effects of the oncolytic virus HSV1716 in mammary tumors

    Get PDF
    Oncolytic viruses (OV) have been shown to activate the anti-tumor functions of specific immune cells like T cells. Here, we show OV can also reprogram TAMs to a less immunosuppressive phenotype. Syngeneic, immunocompetent mouse models of primary breast cancer were established using PyMT-TS1, 4T1 and E0771 cell lines and a metastatic model of breast cancer was established using the 4T1 cell line. Tumor growth and overall survival was assessed following intravenous administration of the OV, HSV1716 (a modified herpes simplex virus). Infiltration and function of various immune effector cells was assessed by NanoString, flow cytometry of dispersed tumors and immunofluorescence analysis of tumor sections. HSV1716 administration led to marked tumor shrinkage in primary mammary tumors and a decrease in metastases. This was associated with a significant increase in the recruitment/activation of cytotoxic T cells, a reduction in the presence of regulatory T cells and the reprograming of TAMs towards a pro-inflammatory, less immunosuppressive phenotype. These findings were supported by in vitro data demonstrating that human monocyte-derived macrophages (MDMs) host HSV1716 replication, and that this led to immunogenic macrophage lysis. These events were dependent on macrophage expression of proliferating cell nuclear antigen (PCNA). Finally, the anti-tumor effect of OV was markedly diminished when TAMs were depleted using clodronate liposomes. Together, our results show that TAMs play an essential role in support of the tumoricidal effect of the OV, HSV1716 - they both host viral replication via a novel, PCNA-dependent mechanism and are reprogramed to express a less immunosuppressive phenotype

    Metabolism of halophilic archaea

    Get PDF
    In spite of their common hypersaline environment, halophilic archaea are surprisingly different in their nutritional demands and metabolic pathways. The metabolic diversity of halophilic archaea was investigated at the genomic level through systematic metabolic reconstruction and comparative analysis of four completely sequenced species: Halobacterium salinarum, Haloarcula marismortui, Haloquadratum walsbyi, and the haloalkaliphile Natronomonas pharaonis. The comparative study reveals different sets of enzyme genes amongst halophilic archaea, e.g. in glycerol degradation, pentose metabolism, and folate synthesis. The carefully assessed metabolic data represent a reliable resource for future system biology approaches as it also links to current experimental data on (halo)archaea from the literature
    corecore