82 research outputs found

    Mott transition at large orbital degeneracy: dynamical mean-field theory

    Full text link
    We study analytically the Mott transition of the N-orbital Hubbard model using dynamical mean-field theory and a low-energy projection onto an effective Kondo model. It is demonstrated that the critical interaction at which the insulator appears (Uc1) and the one at which the metal becomes unstable (Uc2) have different dependence on the number of orbitals as the latter becomes large: Uc1 ~ \sqrt{N} while Uc2 ~ N. An exact analytical determination of the critical coupling Uc2/N is obtained in the large-N limit. The metallic solution close to this critical coupling has many similarities at low-energy with the results of slave boson approximations, to which a comparison is made. We also discuss how the critical temperature associated with the Mott critical endpoint depends on the number of orbitals.Comment: 13 pages. Minor changes in V

    Band-filling effects on electron-phonon properties of normal and superconducting state

    Full text link
    We address the effect of band filling on the effective electron mass mm^* and the superconducting critical temperature TcT_c in a electron-phonon system. We compare the vertex corrected theory with the non-crossing approximation of the Holstein model within a local approximation. We identify two regions of the electron density where mm^* and TcT_c are enhanced or decreased by the inclusion of the vertex diagrams. We show that the crossover between the enhancement at low density and the decrease towards half filling is almost independent of the microscopic electron-phonon parameters. These different behaviors are explained in terms of the net sign of the vertex diagrams which is positive at low densities and negative close to half filling. Predictions of the present theory for doped MgB2_2, which is argued to be in the low density regime, are discussed.Comment: 13 revtex pages, figures eps include

    On the multi-orbital band structure and itinerant magnetism of iron-based superconductors

    Full text link
    This paper explains the multi-orbital band structures and itinerant magnetism of the iron-pnictide and chalcogenides. We first describe the generic band structure of an isolated FeAs layer. Use of its Abelian glide-mirror group allows us to reduce the primitive cell to one FeAs unit. From density-functional theory, we generate the set of eight Fe dd and As pp localized Wannier functions for LaOFeAs and their tight-binding (TB) Hamiltonian, h(k)h(k). We discuss the topology of the bands, i.e. allowed and avoided crossings, the origin of the d6 pseudogap, as well as the role of the As pp orbitals and the elongation of the FeAs4_{4} tetrahedron. We then couple the layers, mainly via interlayer hopping between As pzp_{z} orbitals, and give the formalism for simple and body-centered tetragonal stackings. This allows us to explain the material-specific 3D band structures. Due to the high symmetry, several level inversions take place as functions of kzk_{z} or pressure, resulting in linear band dispersions (Dirac cones). The underlying symmetry elements are, however, easily broken, so that the Dirac points are not protected, nor pinned to the Fermi level. From the paramagnetic TB Hamiltonian, we form the band structures for spin spirals with wavevector qq by coupling h(k)h(k) and h(k+q)h (k+q). The band structure for stripe order is studied as a function of the exchange potential, Δ\Delta, using Stoner theory. Gapping of the Fermi surface (FS) for small Δ\Delta requires matching of FS dimensions (nesting) and dd-orbital characters. The origin of the propeller-shaped FS is explained. Finally, we express the magnetic energy as the sum over band-structure energies, which enables us to understand to what extent the magnetic energies might be described by a Heisenberg Hamiltonian, and the interplay between the magnetic moment and the elongation of the FeAs4 tetrahedron

    Fermi Surface Variation of Ce 4f-electrons in Hybridization Controlled Heavy-Fermion Systems

    Full text link
    Ce 3d-4f resonant angle-resolved photoemission measurements on CeCoGe1.2_{1.2}Si0.8_{0.8} and CeCoSi2_{2} have been performed to understand the Fermi surface topology as a function of hybridization strength between Ce 4ff- and conduction electrons in heavy-fermion systems. We directly observe that the hole-like Ce 4ff-Fermi surfaces of CeCoSi2_{2} is smaller than that of CeCoGe1.2_{1.2}Si0.8_{0.8}, indicating the evolution of the Ce 4ff-Fermi surface with the increase of the hybridization strength. In comparision with LDA calculation, the Fermi surface variation cannot be understood even though the overall electronic structure are roughly explained, indicating the importance of strong correlation effects. We also discuss the relation between the Ce 4ff-Fermi surface variation and the Kondo peaks.Comment: 7 pages, 3 figures, submitte

    A prospective study of prognostic factors for duration of sick leave after endoscopic carpal tunnel release

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Endoscopic carpal tunnel release with a single portal technique has been shown to reduce sick leave compared to open carpal tunnel release, claiming to be a less invasive procedure and reducing scar tenderness leading to a more rapid return to work, and the purpose of this study was to identify prognostic factors for prolonged sick leave after endoscopic carpal tunnel release in a group of employed Danish patients.</p> <p>Methods</p> <p>The design was a prospective study including 75 employed patients with carpal tunnel syndrome operated with ECTR at two hospitals. The mean age was 46 years (SD 10.1), the male/female ratio was 0.42, and the mean preoperative duration of symptoms 10 months (range 6-12). Only 21 (28%) were unable to work preoperatively and mean sick leave was 4 weeks (range 1-4). At base-line and at the 3-month follow-up, a self-administered questionnaire was collected concerning physical, psychological, and social circumstances in relation to the hand problem. Data from a nerve conduction examination were collected at baseline and at the 3-month follow-up. Significant prognostic factors were identified through multiple logistic regression analysis.</p> <p>Results</p> <p>After the operation, the mean functional score was reduced from 2.3 to 1.4 (SD 0.8) and the mean symptom score from 2.9 to 1.5 (SD 0.7). The mean sick leave from work after the operation was 19.8 days (SD 14.3). Eighteen patients (24%) had more than 21 days of sick leave. Two patients (3%) were still unable to work after 3 months. Significant prognostic factors in the multivariate analysis for more than 21 days of postoperative sick leave were preoperative sick leave, blaming oneself for the hand problem and a preoperative distal motor latency.</p> <p>Conclusion</p> <p>Preoperative sick leave, blaming oneself for the hand problem, and a preoperative distal nerve conduction motor latency were prognostic factors for postoperative work absence of more than 21 days. Other factors may be important (clinical, demographic, economic, and workplace) in explaining the great variance in the results of sick leave after carpal tunnel release between studies from different countries.</p

    Electronic Structure Calculation by First Principles for Strongly Correlated Electron Systems

    Full text link
    Recent trends of ab initio studies and progress in methodologies for electronic structure calculations of strongly correlated electron systems are discussed. The interest for developing efficient methods is motivated by recent discoveries and characterizations of strongly correlated electron materials and by requirements for understanding mechanisms of intriguing phenomena beyond a single-particle picture. A three-stage scheme is developed as renormalized multi-scale solvers (RMS) utilizing the hierarchical electronic structure in the energy space. It provides us with an ab initio downfolding of the global band structure into low-energy effective models followed by low-energy solvers for the models. The RMS method is illustrated with examples of several materials. In particular, we overview cases such as dynamics of semiconductors, transition metals and its compounds including iron-based superconductors and perovskite oxides, as well as organic conductors of kappa-ET type.Comment: 44 pages including 38 figures, to appear in J. Phys. Soc. Jpn. as an invited review pape

    High-resolution genomic and expression analyses of copy number alterations in HER2-amplified breast cancer

    Get PDF
    To access publisher full text version of this article. Please click on the hyperlink in Additional Links fieldINTRODUCTION: HER2 gene amplification and protein overexpression (HER2+) define a clinically challenging subgroup of breast cancer with variable prognosis and response to therapy. Although gene expression profiling has identified an ERBB2 molecular subtype of breast cancer, it is clear that HER2+ tumors reside in all molecular subtypes and represent a genomically and biologically heterogeneous group, needed to be further characterized in large sample sets. METHODS: Genome-wide DNA copy number profiling, using bacterial artificial chromosome (BAC) array comparative genomic hybridization (aCGH), and global gene expression profiling were performed on 200 and 87 HER2+ tumors, respectively. Genomic Identification of Significant Targets in Cancer (GISTIC) was used to identify significant copy number alterations (CNAs) in HER2+ tumors, which were related to a set of 554 non-HER2 amplified (HER2-) breast tumors. High-resolution oligonucleotide aCGH was used to delineate the 17q12-q21 region in high detail. RESULTS: The HER2-amplicon was narrowed to an 85.92 kbp region including the TCAP, PNMT, PERLD1, HER2, C17orf37 and GRB7 genes, and higher HER2 copy numbers indicated worse prognosis. In 31% of HER2+ tumors the amplicon extended to TOP2A, defining a subgroup of HER2+ breast cancer associated with estrogen receptor-positive status and with a trend of better survival than HER2+ breast cancers with deleted (18%) or neutral TOP2A (51%). HER2+ tumors were clearly distinguished from HER2- tumors by the presence of recurrent high-level amplifications and firestorm patterns on chromosome 17q. While there was no significant difference between HER2+ and HER2- tumors regarding the incidence of other recurrent high-level amplifications, differences in the co-amplification pattern were observed, as shown by the almost mutually exclusive occurrence of 8p12, 11q13 and 20q13 amplification in HER2+ tumors. GISTIC analysis identified 117 significant CNAs across all autosomes. Supervised analyses revealed: (1) significant CNAs separating HER2+ tumors stratified by clinical variables, and (2) CNAs separating HER2+ from HER2- tumors. CONCLUSIONS: We have performed a comprehensive survey of CNAs in HER2+ breast tumors, pinpointing significant genomic alterations including both known and potentially novel therapeutic targets. Our analysis sheds further light on the genomically complex and heterogeneous nature of HER2+ tumors in relation to other subgroups of breast cancer

    Genome-wide association study identifies risk loci for progressive chronic lymphocytic leukemia

    Get PDF
    Prognostication in patients with chronic lymphocytic leukemia (CLL) is challenging due to heterogeneity in clinical course. We hypothesize that constitutional genetic variation affects disease progression and could aid prognostication. Pooling data from seven studies incorporating 842 cases identifies two genomic locations associated with time from diagnosis to treatment, including 10q26.13 (rs736456, hazard ratio (HR) = 1.78, 95% confidence interval (CI) = 1.47–2.15; P = 2.71 × 10−9) and 6p (rs3778076, HR = 1.99, 95% CI = 1.55–2.55; P = 5.08 × 10−8), which are particularly powerful prognostic markers in patients with early stage CLL otherwise characterized by low-risk features. Expression quantitative trait loci analysis identifies putative functional genes implicated in modulating B-cell receptor or innate immune responses, key pathways in CLL pathogenesis. In this work we identify rs736456 and rs3778076 as prognostic in CLL, demonstrating that disease progression is determined by constitutional genetic variation as well as known somatic drivers

    Electronic structure calculations with dynamical mean-field theory

    Full text link
    corecore