30 research outputs found

    Diversity and dynamics of rare and of resident bacterial populations in coastal sands

    Get PDF
    Coastal sands filter and accumulate organic and inorganic materials from the terrestrial and marine environment, and thus provide a high diversity of microbial niches. Sands of temperate climate zones represent a temporally and spatially highly dynamic marine environment characterized by strong physical mixing and seasonal variation. Yet little is known about the temporal fluctuations of resident and rare members of bacterial communities in this environment. By combining community fingerprinting via pyrosequencing of ribosomal genes with the characterization of multiple environmental parameters, we disentangled the effects of seasonality, environmental heterogeneity, sediment depth and biogeochemical gradients on the fluctuations of bacterial communities of marine sands. Surprisingly, only 3–5% of all bacterial types of a given depth zone were present at all times, but 50–80% of them belonged to the most abundant types in the data set. About 60–70% of the bacterial types consisted of tag sequences occurring only once over a period of 1 year. Most members of the rare biosphere did not become abundant at any time or at any sediment depth, but varied significantly with environmental parameters associated with nutritional stress. Despite the large proportion and turnover of rare organisms, the overall community patterns were driven by deterministic relationships associated with seasonal fluctuations in key biogeochemical parameters related to primary productivity. The maintenance of major biogeochemical functions throughout the observation period suggests that the small proportion of resident bacterial types in sands perform the key biogeochemical processes, with minimal effects from the rare fraction of the communities

    Spatial Scales of Bacterial Diversity in Cold-Water Coral Reef Ecosystems

    Get PDF
    Background: Cold-water coral reef ecosystems are recognized as biodiversity hotspots in the deep sea, but insights into their associated bacterial communities are still limited. Deciphering principle patterns of bacterial community variation over multiple spatial scales may however prove critical for a better understanding of factors contributing to cold-water coral reef stability and functioning. Methodology/Principal Findings: Bacterial community structure, as determined by Automated Ribosomal Intergenic Spacer Analysis (ARISA), was investigated with respect to (i) microbial habitat type and (ii) coral species and color, as well as the three spatial components (iii) geomorphologic reef zoning, (iv) reef boundary, and (v) reef location. Communities revealed fundamental differences between coral-generated (branch surface, mucus) and ambient microbial habitats (seawater, sediments). This habitat specificity appeared pivotal for determining bacterial community shifts over all other study levels investigated. Coral-derived surfaces showed species-specific patterns, differing significantly between Lophelia pertusa and Madrepora oculata, but not between L. pertusa color types. Within the reef center, no community distinction corresponded to geomorphologic reef zoning for both coral-generated and ambient microbial habitats. Beyond the reef center, however, bacterial communities varied considerably from local to regional scales, with marked shifts toward the reef periphery as well as between different in- and offshore reef sites, suggesting significant biogeographic imprinting but wea

    Time- and sediment depth-related variations in bacterial diversity and community structure in subtidal sands

    No full text
    Bacterial community structure and microbial activity were determined together with a large number of contextual environmental parameters over 2 years in subtidal sands of the German Wadden Sea in order to identify the main factors shaping microbial community structure and activity in this habitat. Seasonal changes in temperature were directly reflected in bacterial activities and total community respiration, but could not explain variations in the community structure. Strong sediment depth-related patterns were observed for bacterial abundances, carbon production rates and extracellular enzymatic activities. Bacterial community structure also showed a clear vertical variation with higher operational taxonomic unit (OTU) numbers at 10–15 cm depth than in the top 10 cm, probably because of the decreasing disturbance by hydrodynamic forces with sediment depth. The depth-related variations in bacterial community structure could be attributed to vertical changes in bacterial abundances, chlorophyll a and NO3−, indicating that spatial patterns of microbes are partially environmentally controlled. Time was the most important single factor affecting microbial community structure with an OTU replacement of up to 47% over 2 years and a contribution of 34% to the total variation. A large part of this variation was not related to any environmental parameters, suggesting that temporal variations in bacterial community structure are caused by yet unknown environmental drivers and/or by stochastic events in coastal sand habitats. Principal ecosystem functions such as benthic oxygen consumption and extracellular hydrolysis of organic matter were, however, at a high level at all times, indicating functional redundancy in the microbial communities
    corecore