848 research outputs found

    Application of a plane-stratified emission model to predict the effects of vegetation in passive microwave radiometry

    Get PDF
    This paper reports the application to vegetation canopies of a coherent model for the propagation of electromagnetic radiation through a stratified medium. The resulting multi-layer vegetation model is plausibly realistic in that it recognises the dielectric permittivity of the vegetation matter, the mixing of the dielectric permittivities for vegetation and air within the canopy and, in simplified terms, the overall vertical distribution of dielectric permittivity and temperature through the canopy. Any sharp changes in the dielectric profile of the canopy resulted in interference effects manifested as oscillations in the microwave brightness temperature as a function of canopy height or look angle. However, when Gaussian broadening of the top and bottom of the canopy (reflecting the natural variability between plants) was included within the model, these oscillations were eliminated. The model parameters required to specify the dielectric profile within the canopy, particularly the parameters that quantify the dielectric mixing between vegetation and air in the canopy, are not usually available in typical field experiments. Thus, the feasibility of specifying these parameters using an advanced single-criterion, multiple-parameter optimisation technique was investigated by automatically minimizing the difference between the modelled and measured brightness temperatures. The results imply that the mixing parameters can be so determined but only if other parameters that specify vegetation dry matter and water content are measured independently. The new model was then applied to investigate the sensitivity of microwave emission to specific vegetation parameters.</p> <p style='line-height: 20px;'><b>Keywords: </b>passive microwave, soil moisture, vegetation, SMOS, retrieva

    Translating aboveground cosmic-ray neutron intensity to high-frequency soil moisture profiles at sub-kilometer scale

    Get PDF
    Above-ground cosmic-ray neutron measurements provide an opportunity to infer soil moisture at the subkilometer scale. Initial efforts to assimilate those measurements have shown promise. This study expands such analysis by investigating (1) how the information from aboveground cosmic-ray neutrons can constrain the soil moisture at distinct depths simulated by a land surface model, and (2) how changes in data availability (in terms of retrieval frequency) impact the dynamics of simulated soil moisture profiles. We employ ensemble data assimilation techniques in a “nearly-identical twin” experiment applied at semi-arid shrubland, rainfed agricultural field, and mixed forest biomes in the USA. The performance of the Noah land surface model is compared with and without assimilation of observations at hourly intervals, as well as every 2 days. Synthetic observations of aboveground cosmic-ray neutrons better constrain the soil moisture simulated by Noah in root-zone soil layers (0–100 cm), despite the limited measurement depth of the sensor (estimated to be 12–20 cm). The ability of Noah to reproduce a “true” soil moisture profile is remarkably good, regardless of the frequency of observations at the semi-arid site. However, soil moisture profiles are better constrained when assimilating synthetic cosmic-ray neutron observations hourly rather than every 2 days at the cropland and mixed forest sites. This indicates potential benefits for hydrometeorological modeling when soil moisture measurements are available at a relatively high frequency. Moreover, differences in summertime meteorological forcing between the semi-arid site and the other two sites may indicate a possible controlling factor to soil moisture dynamics in addition to differences in soil and vegetation properties

    Translating aboveground cosmic-ray neutron intensity to high-frequency soil moisture profiles at sub-kilometer scale

    Get PDF
    Above-ground cosmic-ray neutron measurements provide an opportunity to infer soil moisture at the subkilometer scale. Initial efforts to assimilate those measurements have shown promise. This study expands such analysis by investigating (1) how the information from aboveground cosmic-ray neutrons can constrain the soil moisture at distinct depths simulated by a land surface model, and (2) how changes in data availability (in terms of retrieval frequency) impact the dynamics of simulated soil moisture profiles. We employ ensemble data assimilation techniques in a “nearly-identical twin” experiment applied at semi-arid shrubland, rainfed agricultural field, and mixed forest biomes in the USA. The performance of the Noah land surface model is compared with and without assimilation of observations at hourly intervals, as well as every 2 days. Synthetic observations of aboveground cosmic-ray neutrons better constrain the soil moisture simulated by Noah in root-zone soil layers (0–100 cm), despite the limited measurement depth of the sensor (estimated to be 12–20 cm). The ability of Noah to reproduce a “true” soil moisture profile is remarkably good, regardless of the frequency of observations at the semi-arid site. However, soil moisture profiles are better constrained when assimilating synthetic cosmic-ray neutron observations hourly rather than every 2 days at the cropland and mixed forest sites. This indicates potential benefits for hydrometeorological modeling when soil moisture measurements are available at a relatively high frequency. Moreover, differences in summertime meteorological forcing between the semi-arid site and the other two sites may indicate a possible controlling factor to soil moisture dynamics in addition to differences in soil and vegetation properties

    Adenovirus: an emerging factor in red squirrel Sciurus vulgaris conservation

    Get PDF
    1. Adenovirus is an emerging threat to red squirrel Sciurus vulgaris conservation, but confirming clinically significant adenovirus infections in red squirrels is challenging. Rapid intestinal autolysis after death in wild animals frequently obscures pathology characteristic of the disease in animals found dead. 2. We review the available literature to determine current understanding of both subclinical and clinically significant adenovirus infections in free-living wild and captive red squirrel populations. 3. Benefits of scientific testing for adenovirus incorporating both transmission electron microscopy (TEM) and polymerase chain reaction (PCR) technologies are compared and contrasted. We favour viral particle detection using TEM in animals exhibiting enteropathy at post-mortem and the use of PCR to detect subclinical cases where no enteric abnormalities are observed. 4. Adenoviral infections associated with re-introduction studies are evaluated by examination of sporadic cases in wild populations and of data from captive collections used to service such studies. 5. The paucity of data available on adenovirus infection in grey squirrel Sciurus carolinensis populations is documented, and we highlight that although subclinical virus presence is recorded in several locations in Great Britain and in Italy, no clinically significant disease cases have been detected in the species thus far. 6. Current speculation about potential interspecific infection between sciurids and other woodland rodents such as wood mice Apodemus sylvaticus is examined. Where subclinical adenovirus presence has been detected in sympatric populations using the same point food sources, husbandry methods may be used to diminish the potential for cross-infection. 7. Our findings highlight the importance of controlling disease in red squirrel populations by using clearly defined scientific methods. In addition, we propose hypothetical conservation benefits of restricting contact rates between red squirrels and sympatric grey squirrels and of limiting competition from other woodland rodent species

    Ecosystem-scale measurements of biomass water using cosmic ray neutrons

    Get PDF
    Accurate estimates of biomass are imperative for understanding the global carbon cycle. However, measurements of biomass and water in the biomass are difficult to obtain at a scale consistent with measurements of mass and energy transfer, ~1 km, leading to substantial uncertainty in dynamic global vegetation models. Here we use a novel cosmic ray neutron method to estimate a stoichiometric predictor of ecosystem-scale biomass and biomass water equivalent over tens of hectares. We present two experimental studies, one in a ponderosa pine forest and the other in a maize field, where neutron-derived estimates of biomass water equivalent are compared and found consistent with direct observations. Given the new hectometer scale of nondestructive observation and potential for continuous measurements, we anticipate this technique to be useful to many scientific disciplines

    Research Note:<br>Derivation of temperature lapse rates in semi-arid south-eastern Arizona

    No full text
    International audienceEcological and hydrological modelling at the regional scale requires distributed information on weather variables, and temperature is important among these. In an area of basin and range topography with a wide range of elevations, such as south-eastern Arizona, measurements are usually available only at a relatively small number of locations and elevations, and temperatures elsewhere must be estimated from atmospheric lapse rate. This paper derives the lapse rates to estimate maximum, minimum and mean daily temperatures from elevation. Lapse rates were calculated using air temperatures at 2 m collected during 2002 at 18 locations across south-eastern Arizona, with elevations from 779 to 2512 m. The lapse rate predicted for the minimum temperature was lower than the mean environmental lapse rate (MELR), i.e. 6 K km?1, whereas those predicted for the mean and maximum daily temperature were very similar to the MELR. Lapse rates were also derived from radiosonde data at 00 and 12 UTC (5 pm and 5 am local time, respectively). The lapse rates calculated from radiosonde data were greater than those from the 2 m measurements, presumably because the effect of the surface was less. Given temperatures measured at Tucson airport, temperatures at the other sites were predicted using the different estimates of lapse rates. The best predictions of temperatures used the locally predicted lapse rates. In the case of maximum and mean temperature, using the MELR also resulted in accurate predictions. Keywords: near surface lapse rates, semi-arid climate, mean minimum and maximum temperatures, basin and range topograph
    • …
    corecore