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Abstract. Above-ground cosmic-ray neutron measurements
provide an opportunity to infer soil moisture at the sub-
kilometer scale. Initial efforts to assimilate those measure-
ments have shown promise. This study expands such anal-
ysis by investigating (1) how the information from above-
ground cosmic-ray neutrons can constrain the soil moisture
at distinct depths simulated by a land surface model, and
(2) how changes in data availability (in terms of retrieval
frequency) impact the dynamics of simulated soil moisture
profiles. We employ ensemble data assimilation techniques
in a “nearly-identical twin” experiment applied at semi-arid
shrubland, rainfed agricultural field, and mixed forest biomes
in the USA. The performance of the Noah land surface model
is compared with and without assimilation of observations at
hourly intervals, as well as every 2 days. Synthetic obser-
vations of aboveground cosmic-ray neutrons better constrain
the soil moisture simulated by Noah in root-zone soil lay-
ers (0–100 cm), despite the limited measurement depth of the
sensor (estimated to be 12–20 cm). The ability of Noah to re-
produce a “true” soil moisture profile is remarkably good,
regardless of the frequency of observations at the semi-arid
site. However, soil moisture profiles are better constrained
when assimilating synthetic cosmic-ray neutron observations
hourly rather than every 2 days at the cropland and mixed for-
est sites. This indicates potential benefits for hydrometeoro-
logical modeling when soil moisture measurements are avail-
able at a relatively high frequency. Moreover, differences in
summertime meteorological forcing between the semi-arid
site and the other two sites may indicate a possible control-

ling factor to soil moisture dynamics in addition to differ-
ences in soil and vegetation properties.

1 Introduction

The water stored in soils controls the hydrometeorology of a
region by partitioning the rainfall into surface runoff and in-
filtration. In addition, soil water controls the amount of avail-
able energy used for water vapor exchanges with the atmo-
sphere, as opposed to sensible or ground heat exchange. Soil
moisture can also potentially impact biogeochemical interac-
tions between land and atmosphere. With the increased fre-
quency of relevant hydrometeorological events (Coumou and
Rahmstorf, 2012; IPCC, 2012), such as floods and droughts,
a more accurate representation of the soil water is needed
for improved weather and climate predictions and for better
practices in agriculture and water resources planning (Koster
et al., 2004; Seneviratne, 2012).

In weather and climate models, the exchanges of water,
heat, and momentum between land and atmosphere are sim-
ulated by so-called land surface models (LSMs). Such mod-
els have evolved over the last few decades (Best et al., 2011;
Bonan et al., 2002; Clark et al., 2011; Niu et al., 2011; Ole-
son et al., 2008; Pitman, 2003; Sellers et al., 1997; Yang et
al., 2011), in part due to comparison studies using flux tower
measurements (e.g., Baker et al., 2008, 2003; Rosolem et al.,
2012a, b; Sakaguchi et al., 2011; Sellers et al., 1989; Wang et
al., 2010), such as the AmeriFlux network (Baldocchi, 2003).
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4364 R. Rosolem et al.: Translating cosmic-ray neutron intensity to soil moisture profiles

However, until recently, soil moisture measurements at spa-
tial scales comparable to the horizontal footprint of flux tow-
ers and grid sizes employed in LSMs (Wood et al., 2011) had
been difficult and costly (Robinson et al., 2008).

Traditional point-scale soil moisture measurements are
usually available at high frequency (e.g., hourly), but suffer
from having a small support volume (a few tens of centime-
ters). On the other hand, large-scale soil moisture measure-
ments are available globally through satellite remote sensing
(Brown et al., 2013; Entekhabi et al., 2010; Kerr et al., 2010),
but have low-frequency retrievals (1–3 days) and shallow
penetration depths (1–5 cm). This potentially limits knowl-
edge of the root-zone soil moisture that provides the link be-
tween land and atmosphere via evapotranspiration (Senevi-
ratne et al., 2010).

Recent innovative technology provides an opportunity to
estimate soil moisture at scales comparable to flux tower
footprints using cosmic rays (Zreda et al., 2008). The mea-
surement relies on the natural production of fast (low-energy)
neutrons in the soil from high-energy neutrons created by
cosmic rays. This process is strongly controlled by the much
higher absorbing/moderating power of hydrogen atoms rel-
ative to other chemical elements (see Fig. 5 in Zreda et al.,
2012). Therefore, when soil is relatively wet with high hy-
drogen content, fewer fast neutrons reach the surface than
when the soil is dry with low hydrogen content. The cosmic-
ray sensor measures the neutron intensity (referred to as
moderated neutrons count over a given period of time –
usually an hour), which is consequently related to the soil
water content. The horizontal effective measurement area
is near-constant and approximately 300 m in radius at sea
level under a dry atmosphere (Desilets and Zreda, 2013),
while the effective measurement depth varies approximately
from 10 to 70 cm, depending on the total soil water (i.e.,
pore plus chemically bound “lattice” water, as discussed in
Franz et al., 2012a), see Fig. 1. This new technology is be-
ing investigated around the globe in newly established net-
works, such as the COsmic-ray Soil-Moisture Observing
System in the USA (COSMOS;http://cosmos.hwr.arizona.
edu) (Zreda et al., 2012), the Australian National Cosmic Ray
Soil-Moisture Monitoring Facility (CosmOz;http://www.
ermt.csiro.au/html/cosmoz.html) (Hawdon et al., 2014), the
German Terrestrial Environmental Observatories (TERENO;
http://teodoor.icg.kfa-juelich.de/overview-en) (Zacharias et
al., 2011), and most recently in Africa (http://cosmos.hwr.
arizona.edu/Probes/africa.php) and the UK (COSMOS-UK;
http://www.ceh.ac.uk/cosmos).

Initial efforts to assimilate near surface cosmic-ray neu-
trons into hydrometeorological models have shown promis-
ing results (Shuttleworth et al., 2013; Han et al., 2014), but
focused mainly on the signal associated with the integrated,
depth-weighted soil moisture estimates. The present study
expands the application of the cosmic-ray soil moisture using
ensemble data assimilation techniques. The objectives here
are:

Figure 1. Schematic representation of the effective measurement
volume for the cosmic-ray soil moisture sensor. The effective depth
depicted in the figure refers to the overall range in the sensor (Zreda
et al., 2008). Notice that the effective depth estimated for the syn-
thetic experiments in this study varies approximately between 12
and 20 cm (refer to text).

1. to determine how effectively the information from
aboveground cosmic-ray neutrons is propagated to in-
dividual soil moisture layers in a land surface model;

2. to assess the benefits/limitations of high-frequency re-
trieval offered by this new technology.

Analyses are carried out for the summer period (May through
September 2012) at three distinct biomes in the USA using
synthetic observations of neutron intensity obtained from the
LSM.

2 Data and methods

2.1 Sites description

Site selection was made based on the availability of mete-
orological forcing data from the AmeriFlux network (http:
//ameriflux.lbl.gov), and to include characteristic differences
in site-to-site climatology, land cover and soil types, as sum-
marized in Table 1. The soil and vegetation types at each site
were assigned the following classifications obtained from the
AmeriFlux database. The Kendall site located in the Wal-
nut Gulch Experimental Watershed is a semi-arid grassland
comprising mainly of C4 grasses with a few scattered shrubs
with a dominant growing season in response to the summer
rains (Scott et al., 2010). The Nebraska site, located at the
University of Nebraska Agricultural Research and Develop-
ment Center, is a rainfed agricultural field characterized by
maize-soybean rotation with a growth period (planting to har-
vest) from May to October (Verma et al., 2005). The Park
Falls/WLEF tower located in the Park Falls Ranger District
of the Chequamegon National Forest is characterized by a
managed landscape, where logging activities, such as thin-
ning and clear-cuts, are concentrated in the upland region
(Davis et al., 2003). The growing seasons are typically short
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Table 1.Site information obtained from AmeriFlux database (http://ameriflux.lbl.gov). MAT = mean annual temperature, and MAP= mean
annual precipitation. Notice the analyzed period in this study is a subset of the available data from each site and it is defined from 1 May 2012,
00:00 UTC to 30 September 2012, 23:00 UTC.

Site Latitude Longitude Land cover Soil type MAT (◦C) MAP (cm) Spin-up period (one cycle)

Kendall 31◦74′ N 109◦94′ W Grasslands Loam 16 41 1 January 2010, 00:00 UTC to
31 December 2012, 23:00 UTC

Nebraska 41◦10′ N 96◦26′ W Croplands Silty clay loam 10 78 1 January 2011, 00:00 UTC to
31 December 2012, 23:00 UTC

Park Falls 45◦56′ N 90◦16′ W Mixed forest Sandy loam 4 82 1 January 2011, 00:00 UTC to
31 December 2012, 23:00 UTC

and the winters long and cold (Mackay et al., 2002). Soil
moisture availability controls summer evapotranspiration at
the Kendall and Nebraska sites and, to a lesser extent, at the
Park Falls (Teuling et al., 2009).

In order to produce a continuous set of hourly meteorolog-
ical forcing data for each site for the period of interest (May
through September 2012), the following data gap filling rules
were applied following Rosolem et al. (2010):

1. if the gap was less than 3 h, it was filled by linear inter-
polation;

2. if the gap was greater than 3 h, the missing hours were
replaced by values for the same hours averaged over the
previous and subsequent 15 days;

3. if any additional gap filling was needed, the missing
data were replaced by the average value for the specific
hour calculated in the monthly mean diurnal cycle.

2.2 Noah Land Surface model

The Noah model, used operationally at the National Centers
for Environmental Prediction (NCEP) for coupled weather
and climate modeling (Ek, 2003), was adopted in this study.
This LSM is also used in the NASA land information sys-
tem (LIS) (Kumar et al., 2008), and in the Global (Rodell et
al., 2004) and North American (Mitchell, 2004) Land Data
Assimilation Systems (GLDAS and NLDAS, respectively).

The model contains four soil layers that extend two meters
below the surface; specifically, a 10 cm thick surface layer,
a 30 cm thick root-zone layer, a 60 cm thick deep root-zone
layer, and a 1 m thick deep layer. The present study focuses
on the first three layers of the model, where roots are pre-
scribed to be present (0 to 1 m total depth). Soil-moisture
parameterization is based on the one-dimensional Richards
equation (Chen et al., 1996; Ek, 2003). Soil and vegeta-
tion parameters were defined from look-up tables and the
Noah simulation run at hourly time steps at each selected
site. A full description of Noah can be found in Chen and
Dudhia (2001) and in Ek (2003), and the model is avail-
able from the Research Applications Laboratory at the Na-

tional Center for Atmospheric Research (RAL/NCAR) at
http://www.ral.ucar.edu/research/land/technology/lsm.php.

2.3 Cosmic-ray Soil Moisture Interaction Code
(COSMIC)

In this study, the COsmic-ray Soil-Moisture Interaction Code
(Shuttleworth et al., 2013) is the forward observational oper-
ator used in data assimilation. COSMIC is characterized by
a simple, physically based parameterization of belowground
processes relevant for soil moisture estimates using cosmic-
ray sensors, which includes (1) the degradation of the incom-
ing high-energy neutron flux with soil depth, (2) the produc-
tion of fast neutrons at a given depth in the soil, and (3) the
loss of the resulting fast neutrons before they reach the soil
surface. Despite its simplicity, COSMIC is robust and much
more efficient than the traditional Monte Carlo neutron par-
ticle model commonly employed in cosmic-ray soil mois-
ture applications (Franz et al., 2012b, 2013b; Rosolem et al.,
2013). Here, the COSMIC is used to convert soil moisture
profiles derived from the Noah into an equivalent neutron in-
tensity, as seen by a cosmic-ray sensor. The code has been
developed as part of the COSMOS network and is available
athttp://cosmos.hwr.arizona.edu/Software/cosmic.html.

2.4 Ensemble data assimilation

Data assimilation combines the information from observa-
tions and model predictions in order to estimate the state of a
physical system, while recognizing both have some degree
of uncertainty. Given the complexity of geophysical mod-
els in general, ensemble data assimilation techniques were
originally developed to decrease the computational cost of
the nonlinear filtering problem patterned after the Kalman
filter (Kalman, 1960; Kalman and Bucy, 1961) by using a
sample of model-state vectors to compute their statistical
moments (i.e., mean and covariance) (Evensen, 1994, 2003;
Houtekamer and Mitchell, 1998). In the hydrometeorological
community, interest in ensemble data assimilation methods is
growing rapidly for flood forecasting (Clark et al., 2008) and
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cosmic-ray 
neutrons 

forward observational 
operator (COSMIC) 

NOAH LSM 

Figure 2. Schematic representation of the data assimilation and
state update procedures in the Data Assimilation Research Testbed
(DART) used in this study. Adapted from original DART diagram
available athttp://www.image.ucar.edu/DAReS/DART.

soil moisture applications (e.g., Draper et al., 2012; Kumar
et al., 2012; Li et al., 2012).

The ensemble data assimilation method used in this study
is an approximation of a general filtering algorithm devel-
oped using Bayes’ theorem (Wikle and Berliner, 2007), and
the method is described in detail by Anderson (2003, 2009).
The probability distribution of a model state is approximated
by anN -member sample ofM-dimensional state vectors (x i ;
i = 1, 2, . . . ,N), whereN is the ensemble size (in this study,
N = 40) and eachxi is anM vector (e.g., soil moisture at
each model layer). Because the error distributions for obser-
vations taken at different times are usually assumed indepen-
dent in geophysical applications, each available observation
can be assimilated sequentially. Hence, for simplicity, the
assimilation of a single scalar observation,y, is used here.
Bayes’ theorem is as follows:

p(x|Y,y) = p(y|x)p(x|Y)/η, (1)

wherex is the model state variable,Y is the set of all obser-
vations that have already been assimilated, which does not
include the new observation,y, available at the current time,
andη refers to a normalization factor. The ensemble assimi-
lation procedure is summarized below.

1. Each ensemble member is advanced from the time of
the most recently used observation to a time sufficiently
close to the time of the next available observation using
the Noah.

2. A prior ensemble estimate ofy is created by applying
the forward operatorh (in this case, COSMIC) to each
sample of the prior state.

3. An updated ensemble estimate ofy conditioned on the
new observation is computed from the prior ensemble
estimate ofy and the observed value,yo, using Eq. (1).
In this study, the Ensemble Adjustment Kalman Filter
(EAKF) (Anderson, 2001) is used.

In order to account for uncertainty in the model,
the prior ensemble estimate ofy is approximated as
Normal(yp, σ 2

p ), whereyp andσ 2
p are the sample mean

and variance computed from the model ensemble, while
the uncertainty in the observation,yo, is defined asσ 2

o .
Given the nature of the cosmic-ray sensor and the large
number of counts per integration time (i.e., hourly), the
assumption of observation uncertainty to be normally
distributed (withσ 2

o = yo) is appropriate. The product
of Normal(yp, σ 2

p ) and Normal(yo, σ 2
o ) in Eq. (1) is

computed resulting in a Gaussian updated distribution
for y, Normal(yu, σ 2

u ) with an updated variance (σ 2
u ) and

mean (yu), defined as:

σ 2
u =

[(
σ 2

p

)−1
+

(
σ 2

o

)−1
]−1

(2)

and

yu = σ 2
u

[(
σ 2

p

)−1
yp +

(
σ 2

o

)−1
yo

]
, (3)

respectively. In the EAKF, the prior ensemble distribu-
tion of y is then shifted and linearly contracted to create
an updated ensemble with sample statistics as in Eqs. (2)
and (3). Observation increments are computed as:

1yi =

√
σ 2

u /σ 2
p

(
yp,i − yp

)
+ yu − yp,i;

i = 1,2, . . .,N, (4)

where the subscripti refers to ensemble member.

4. Increments to the prior ensemble of each state-vector
element (xj,i , wherej refers to an element of the state
vector, whilei refers to an ensemble member) are com-
puted by linearly regressing the observation increments
(1yi) onto each state-vector component independently
using the prior joint sample statistics, so that

1xj,i =

(
σp,j/σ

2
p

)
1yi ; j = 1,2, . . .,M;

i = 1,2, . . .,N. (5)
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Table 2.Perturbation magnitudes of meteorological inputs used by
Noah for individual ensemble members in this study. The pertur-
bation distribution is either Lognormal (i.e., multiplying the ref-
erence variable) or Normal (i.e., adding to or subtracting from a
reference value). Values within parentheses correspond respectively
to mean and standard deviation. Notice, vegetation greenness frac-
tion has been added to the list given its strong sensitivity in Noah
(Miller et al., 2006). The adopted magnitude values follow stan-
dard procedures described in the literature, including Dunne and
Entekhabi (2005), Kumar et al. (2012), Margulis et al. (2002), Re-
ichle and Koster (2004), Reichle et al. (2008, 2007, 2002), Sabater
et al. (2007), Walker and Houser (2004), Zhang et al. (2010), and
Zhou et al. (2006).

Noah forcing Perturbation magnitude

Wind speed (m s−1) Lognormal(1,0.3)
Air temperature (K) Normal (0,5)
Relative humidity (fraction) Lognormal (1,0.2)
Surface pressure (Pa) Normal (0,10)
Incoming shortwave radiation (W m−2) Lognormal (1,0.3)
Incoming long-wave radiation (W m−2) Normal (0,50)
Precipitation rate (kg m−2 s−1) Lognormal(1,0.5)
Vegetation greenness fraction (-) Normal(0,0.05)

The Noah, the COSMIC operator and COSMOS obser-
vations have all been implemented into the Data Assim-
ilation Research Testbed (DART) framework (Ander-
son et al., 2009). Figure 2 shows a schematic diagram
of the assimilation and state update procedures used in
this study. DART is an open-source community facil-
ity that provides software tools for ensemble data as-
similation research in geosciences. The modularity of
DART makes the interface to new models and obser-
vations straightforward and clean. The DART code is
available athttp://www.image.ucar.edu/DAReS/DART.

3 Experimental setup

3.1 Perturbed meteorological forcing and initial
conditions

In order to ensure that appropriate ensemble spread through-
out the assimilation procedure, time series of cross-
correlated perturbation fields were generated for all meteo-
rological forcing inputs from Noah and applied to each indi-
vidual ensemble member (a total of 40 members), similar to
the approach used by Shuttleworth et al. (2013); see Table 2
for more details. In all cases, the Latin Hypercube random
sampling method (McKay et al., 1979) was used to generate
uniformly distributed soil moisture values (for each model
layer), varying between minimum and saturated soil water
contents in the model. We therefore assume no information
about the soil moisture profiles prior to the initial simula-
tion time step (i.e., 1 May 2012). All remaining model states

Unperturbed (original) forcing data (all data available) 

Spin-up (three cycles) 

Final cycle generated 

Initial conditions corresponding for 2012-05-01 00Z for all 
state variables except for soil moisture 

Initial conditions corresponding for 2012-05-01 00Z for soil 
moisture using Latin Hypercube Sampling strategy 

Perturbed forcing data (all data available) 

For 40 individual 
ensemble member 

simulations 

Single simulation for 
synthetic observation 

generation 

Noah LSM unperturbed (original) parameter sets 

Noah LSM unperturbed 
(original) parameter sets 

Begin data 
assimilation 
experiments 

Spin-up (three cycles) 

Final cycle generated 

Noah LSM perturbed 
parameter sets 

‘True’ soil moisture and 
neutron counts (through 

COSMIC) 

Synthetic observation 
generated by perturbing 

‘true’ neutron counts 

Sub-section 3.1 Sub-section 2.4 Sub-section 3.2 

Figure 3.Experimental setup used in this study for data assimilation
of synthetic observations of cosmic-ray neutrons.

were obtained from the previous time step (30 April 2012
at 23:00 UTC) from a spin-up simulation with four repeated
cycles (spin-up periods shown in Table 1) using the original
meteorological forcing data (i.e., unperturbed) and original
model parameters (Fig. 3).

3.2 Synthetic observations

We employ the use of synthetic observations in this study
in order to better assess the advantages and limitations of
this novel cosmic-ray technology. The approach allows a di-
rect comparison between simulated and “true” soil moisture
states at the three sites at which no additional soil moisture
observations are available at the same spatial scale measured
by the cosmic-ray sensors. The use of synthetic observa-
tions in data assimilation studies targeted at satellite remote-
sensing soil moisture missions continues to show great im-
portance for advancing our understanding of regional hy-
drometeorological modeling (Kumar et al., 2012; Nearing et
al., 2012; Reichle et al., 2008).

For each studied location, synthetic neutron intensity ob-
servations (referred to in the rest of the article simply as “ob-
servations”) are generated directly from the Noah in com-
bination with the COSMIC. An additional set of perturbed
meteorological forcing (not from the original pool of en-
semble members) is generated following the same proce-
dure described in the previous section. Additionally, 10 pa-
rameters, originally identified as influential using a simple
“one-at-a-time” sensitivity analysis approach (not shown),
are perturbed within a±10 % range from their default val-
ues to generate a single parameter set (for each location)
used in Noah for the synthetic output generation in a “nearly-
identical twin experiment”. The idea is to emulate some un-
expected (or unidentifiable) variability observed in soil mois-
ture due to small spatial-scale heterogeneities (Crow et al.,
2012; Famiglietti et al., 2008; Western and Blöschl, 1999)
through changes in key parameter values in the Noah model.
Identified parameters includefxexp (bare soil evaporation
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exponent),refdk(reference value for saturated hydraulic con-
ductivity), refkdt (reference value for surface infiltration pa-
rameter),bb (Clapp and Hornberger “b” parameter),ref-
smc(soil moisture threshold for onset of some transpiration
stress),drysmc(top-layer soil moisture threshold at which di-
rect evaporation from soil ceases),wltsmc(soil moisture wilt-
ing point), satdk (saturated hydraulic conductivity),satdw
(saturated soil diffusivity), andrs (minimum stomatal re-
sistance). Soil porosity was not included and hence the de-
fault values were used for each site. We use the coefficient
of variation from the in situ dry-soil bulk density collected
within the cosmic-ray footprint at all three sites combined
as a proxy for the perturbation magnitude (i.e.,±10 %) ap-
plied to parameter variations to account for uncertainty due
to spatial heterogeneity embedded in the single-point sim-
ulation (please refer to the Table S1 in the Supplement for
detailed description of Noah parameter values). Such per-
turbations applied both to the meteorological forcing and to
above-mentioned parameters produce slightly different soil
moisture dynamics (and hence “true” neutron counts) when
compared to COSMIC-derived neutron counts when forced
with Noah with the original parameter set (not shown). For
each site, the spin-up corresponds to the period shown in Ta-
ble 1, repeated four times (i.e., four cycles).

After the spin-up period, the simulated soil moisture at
each soil layer from May through September 2012 was then
used as input data for the COSMIC to generate a “true”
equivalent neutron intensity time series (counts per hour).
This “true” neutron intensity is finally perturbed following
a probability distribution associated with the uncertainty ob-
served in the actual cosmic-ray sensors, as described by
Zreda et al. (2008) (σ 2

Ncounts
= Ncounts; whereNcounts is the

neutron intensity), and a time series of hourly synthetic ob-
servations is produced for each site. In addition, a subset
from the hourly time series is produced assuming obser-
vations are available every other day (for simplicity, de-
fined always at noon GMT). The 2-day frequency was se-
lected because it is similar to the temporal resolution likely
to be achieved by the most recent satellite remote-sensing
soil moisture missions (Brown et al., 2013; Entekhabi et al.,
2010; Kerr et al., 2010). In order to avoid undesired insta-
bilities at the beginning of the simulation, no observation is
assimilated during the first 24 h. A schematic diagram of the
experimental setup is shown in Fig. 3.

We use these observations in our experiments to evaluate
the ability of Noah to reproduce the synthetically observed
neutron intensity, and consequently to analyze the updated
soil moisture profile against the “true” soil moisture state.
Notice that the neutron intensity time series produced in this
study are not rescaled to correspond to the location of the
original COSMOS probe site in the San Pedro, as discussed
by Zreda et al. (2012). This is because we want to preserve
the site-specific count statistics to better describe measure-
ment uncertainty (lower count rates, on average, will tend to
be more uncertain compared to locations at which count rates

are relatively high). Moreover, there are no systematic biases
between observed and simulated neutron counts (not shown),
and data assimilation is performed with zero-mean random
errors only (Dee, 2005). Observing System Simulation Ex-
periments (OSSEs), such as those proposed in this study, al-
low us to accurately isolate the signal in the neutron measure-
ments that comes directly from the soil moisture (through the
COSMIC) for more rigorous analyses. Model structural defi-
ciencies, which could potentially result in systematic biases,
are therefore not accounted for, and observation uncertain-
ties not related to soil moisture (e.g., atmospheric water va-
por, changes in biomass) do not impact the simulations. In
addition, independent observations of soil moisture profiles
representing similar horizontal effective measurement areas
are generally not available.

4 Results

4.1 Assimilation of neutron counts

For all analyzed sites, the assimilation of summertime neu-
tron observations in Noah improves the dynamics relative to
the true neutron count time series in comparison with the no
data assimilation case (i.e., “no DA”) (Fig. 4). The ensem-
ble mean of the prior distribution is used for all ensemble
simulations throughout this study. As discussed in Section 1,
the higher the neutron counts at a specific location, the lower
the integrated soil moisture is expected to be. Rainfall events
are therefore associated with sharp decreases in the neutron
counts followed by a relatively slower dry-down period. No-
ticeably, the Kendall site (Fig. 4a) is characterized by an ini-
tial long period with very low or no rain (pre-monsoon) until
early July, followed by more frequent rainfall events (mon-
soon) between July and early September. Both the Nebraska
and Park Falls sites (Fig. 4b and c, respectively) show the
opposite rainfall pattern with an initial period with frequent
rainfall (slightly more frequent at Park Falls) until about mid-
June–early July, followed by a relatively dry period for about
1–2 months (slightly longer at Park Falls). Notice that 2012
was one of the driest years on record for the Midwestern USA
(Blunden and Arndt, 2013).

Both assimilation cases (i.e., with hourly available obser-
vations – “DA 1-hour” shown as the red line, with observa-
tions available once every 2 days, and “DA 2-day” shown as
green circles) suggest superior performance compared with
the case without assimilation (blue line; Table 3). Overall,
the DA 1-hour case approaches more rapidly to the true neu-
tron counts and also exhibits a tendency for relatively smaller
differences when compared to the DA 2-day case. Notably,
at the onset of the monsoon at Kendall (i.e., early July), the
low-frequency assimilation case neither reproduces the high-
frequency dynamics nor the DA 1-hour case (Fig. 4a). At the
Nebraska and Park Falls sites (Fig. 4b and c), there is not
much improvement in Noah-derived neutron counts from the
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Figure 4. Equivalent neutron intensity (counts per hour – cph) simulated by Noah coupled to COSMIC without (no DA) and with data
assimilation characterized by low- and high-frequency retrievals (respectively, DA 2-day and DA 1-hour) compared to synthetic observations
(obs) and true intensities. The ensemble mean of the prior distribution is shown for all ensemble simulations.

Table 3. Summary of statistics computed for Noah for assimilation of synthetic neutron intensity measurements in counts per hour (cph).
Metrics are computed with respect to both true counts and synthetic observations, respectively “w.r.t. True” and “w.r.t. Obs”. The ensemble
mean of the prior distribution is used for all ensemble simulations.

Site Simulation
Mean bias RMSE

Total spread
R2

w.r.t. Obs w.r.t. True w.r.t. Obs w.r.t. True w.r.t. Obs w.r.t. True

Kendall
no DA −89 −90 119 109 96 0.89 0.94

DA 2-day −9 −13 63 60 57 0.91 0.92
DA 1-hour 0 −1 63 60 50 0.91 0.92

Nebraska
no DA −15 −14 49 32 51 0.90 0.97

DA 2-day −13 −15 45 28 40 0.89 0.97
DA 1-hour −8 −8 38 12 37 0.93 1.00

Park Falls
no DA −8 −8 30 15 36 0.82 0.98

DA 2-day −6 −8 27 14 27 0.81 0.96
DA 1-hour −2 −2 25 3 26 0.84 1.00

DA 2-day relative to the no DA in periods where little or no
rainfall occurs.

The use of synthetic observations ensures that the neutron
signal from the measurement solely comes from direct con-
tribution of soil moisture dynamics, and that any model struc-
tural deficiency does not impact the results. Hence, a poten-
tial limitation of an OSSE is that the results can be very opti-
mistic in comparison to a data assimilation experiment using
real observations. For instance, when comparing against real
observations, one would like the RMSE (which represents
the accuracy of the ensemble mean state relative to the obser-
vations) to be comparable to the total spread (which contains
both the ensemble spread and observational error signals). In

that case, the RMSE is defined as the square root of the aver-
age squared difference between the model estimates and the

observations, while the total spread is defined as
√

σ 2
p + σ 2

o ,

where
(
σ 2

p + σ 2
o

)
represents the total variance (i.e., the sum

of the ensemble variance,σ 2
p , plus the observational error

variance,σ 2
o ). In our case, however, one way to test the suc-

cess of an OSSE is to compare the RMSE computed with
respect to the “true” observations with the ensemble spread
(σp) directly because the variance of the “true” observations
(σ 2

o ) is, by definition, zero.
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Figure 5. Root-Mean-Squared Error (RMSE) calculated for the ensemble mean relative to the “true” observations (black circles) in compar-
ison to the ensemble spread (red diamonds). The ensemble mean of the prior distribution is used for all ensemble simulations.

Figure 5 shows the comparison between the RMSE (black
circles) and spread (red diamonds) for all analyzed cases at
all sites. Overall, the magnitudes for the spread compare well
with those for RMSE, suggesting that this is a successful as-
similation experiment. Notice that these two quantities tend
to be closest to each other for the DA 1-hour case (right
column), and the largest differences are seen for the no DA
case (left column). The rapid reduction in total spread at the
Kendall site with time for the no DA case is due to the fact
that soil moisture presents a strong “damping” signal, es-
pecially in the first few months when little rainfall occurs
(May–July). This is fundamentally the same behavior ob-
served when models are “spun up” or “warmed up” for a se-
lected period of time prior to their final analysis simulation.
Consequently, individual ensemble members move towards
a preferred state. Notice that this behavior is not clearly ob-
served at the Nebraska and Park Falls site, at which rainfall
occurs continuously in the first months (May–July). In com-
parison to the no DA case, RMSE for both assimilation cases
are reduced, with the lowest RMSE values found for the DA
1-hour case.

As expected, the time at which rainfall occurs appears to
control the characteristics of both statistical quantities. We
therefore identified two patterns that emerged in Fig. 5. The
first pattern is associated with a rapid increase in both RMSE
and spread during large rainfall events (rapid reduction in
neutron counts, as shown in Fig. 4). These are more clearly
observed for the DA 2-day cases (middle-column) at Kendall
(mid-May, early July, mid-August, and early September) and
at Nebraska (mid-July, late August, and mid-September).
These peaks are substantially reduced when observations of
neutron counts are assimilated at higher frequency (i.e., DA

1-hour, as shown in the right column). No large rainfall event
was identified at the Park Falls site (Fig. 4). Consequently,
this pattern was not observed in Fig. 5.

The second pattern relates to the overall timing of the sum-
mer rainfall. At the Kendall site, once the monsoon period
begins (early July), the assimilation of observations success-
fully constrains the model, which produces consistent equiv-
alent neutron counts (Fig. 5b and c). In other words, rainfall
pulses provide “new information” to the assimilation system.
For the two other sites (Nebraska and Park Falls), an active
rainfall period lasts until early July and is then followed by
a period of low or no rainfall (arguably, no substantial “in-
formation” to the assimilation system). In this case, we ob-
serve a tendency for lower spread values in comparison to
RMSE at both sites for the DA 2-day case. This tendency
disappears when high-frequency observations are assimilated
(i.e., DA 1-hour) at the Park Falls site. For the Nebraska site,
although still present, the tendency is reduced for the DA 1-
hour. These results highlight the quality of the OSSEs carried
out in this study, as well as the distinct performance of the
assimilation system due to different timing in rainfall events
occurring at all three AmeriFlux sites.

Finally, the results summarized in Table 3 show better
overall performance for DA 1-hour compared to DA 2-day,
with both cases being almost always superior to the no DA
case. In almost all cases, computed statistics with respect to
the true counts are better than those computed with the syn-
thetic observations. This is expected because an additional
degree of randomness is introduced in the synthetic obser-
vations (i.e., light-gray circles in Fig. 4). The degree of im-
provement compares well with the results from Shuttleworth
et al. (2013).
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Figure 6. Comparison of soil moisture dynamics at the Kendall site for the first three soil layers in Noah. Top row: simulated soil moisture
(θ) without (no DA) and with data assimilation, characterized by low- and high-frequency retrievals (respectively, DA 2-day and DA 1-hour)
compared to the true soil moisture states. Middle row: the difference between simulated soil moisture and the true states (1θ) within pre-
defined uncertainty ranges (dashed black lines). Bottom row: convergence criterion within uncertainty ranges. Results show actual model
time steps (i.e., hourly). The ensemble mean of the prior distribution is shown for all ensemble simulations.

Table 4.Summary of statistics computed for Noah for assimilation of synthetic neutron intensity measurements for all sites. All metrics are
calculated only when individual layer convergence is above 40 % for the case DA 1-hour (see bottom panel of Figs. 6, 7, and 8), and with
respect to the true soil moisture state. The ensemble mean of the prior distribution is used for all ensemble simulations. Numerical values are
rounded to the first three decimal points.

Noah
Mean bias RMSE Spread R2

soil moisture No DA DA 2-day DA 1-hour No DA DA 2-day DA 1-hour No DA DA 2-day DA 1-hour No DA DA 2-day DA 1-hour
(m3 m−3)

Kendall

θ1 (0–10 cm) 0.009 −0.003 −0.003 0.011 0.006 0.005 0.019 0.007 0.003 0.988 0.990 1.000
θ2 (10–40 cm) 0.037 0.009 0.006 0.042 0.011 0.007 0.033 0.012 0.006 0.907 0.981 0.995
θ3 (40–100 cm) 0.071 0.030 0.009 0.072 0.033 0.012 0.051 0.032 0.015 0.906 0.872 0.989

Nebraska

θ1 (0–10 cm) 0.004 0.005 0.001 0.010 0.009 0.004 0.016 0.008 0.003 0.978 0.987 0.996
θ2 (10–40 cm) 0.007 0.011 0.006 0.017 0.013 0.007 0.022 0.009 0.003 0.962 0.987 0.998
θ3 (40–100 cm) 0.012 0.012 0.009 0.012 0.012 0.009 0.038 0.018 0.007 0.999 0.998 0.993

Park Falls

θ1 (0–10 cm) 0.005 0.007 0.001 0.009 0.009 0.003 0.018 0.008 0.003 0.984 0.985 0.996
θ2 (10–40 cm) 0.006 0.008 0.002 0.010 0.010 0.004 0.022 0.009 0.003 0.986 0.987 0.997
θ3 (40–100 cm) 0.007 0.013 0.005 0.011 0.015 0.007 0.031 0.013 0.005 0.974 0.980 0.990

4.2 Impact of near-surface cosmic-ray neutrons on
simulated soil moisture profiles

In the case of cosmic-ray sensors, the dynamics of equiva-
lent neutron counts observed can be assumed to be a proxy
for integrated, depth-weighted variation of soil moisture at
sub-kilometer scales, as shown by Shuttleworth et al. (2013).
Here, we expand this analysis by assessing how well all root-
zone layers in the Noah (prescribed as the first 1 m of soil in
the model) are simulated with and without the assimilation

of observed neutron counts. The effective sensor depth com-
puted from the synthetic observations at all three sites varies
on average from∼ 12 cm during the wet period to∼ 20 cm in
the dry months. This corresponds to the entire surface (first)
soil layer of Noah with an additional contribution from the
second soil layer in the model (10–40 cm layer). Overall re-
sults are summarized in Table 4 and presented for each site
in Figs. 6, 7, and 8.

In those figures, the left column is related to the first soil
layer, and the right column is related to the deepest layer
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Figure 7. Same as Fig. 6 but for Nebraska.
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Figure 8. Same as Fig. 6, but for Park Falls.

analyzed. The top row corresponds to the actual soil mois-
ture simulated by Noah for the three cases (i.e., no DA, DA
2-day, and DA 1-hour) in comparison to the true soil moisture
state (same color-coding as before). The middle row shows
the difference between the Noah-derived and true soil mois-
ture. We selected an “uncertainty range” of±0.02 m3 m−3 as
our target for comparison, which is similar to the accuracy
found in more traditional point-scale measurements (Topp et
al., 1980) and also comparable to the accuracy of cosmic-ray
sensors (Franz et al., 2012a; Rosolem et al., 2013). Note that
the target accuracy from satellite remote-sensing products is
twice as big, as discussed by Brown et al. (2013), Entekhabi

et al. (2010), and Kerr et al. (2010). The bottom row corre-
sponds to a simple convergence criterion based on the results
from the middle row. For each hourly time step, we check
whether the difference with respect to the true soil moisture
is within the “uncertainty range”. If it is within this range, the
value is added to the current number of counts, and the per-
centage convergence is taken with respect to the total number
of points analyzed at that given time. As an example, if the
first point found within the “uncertainty range” is located in
position 50 of the time array, its convergence is computed as
2 % (i.e., 1/50). If the next time step is also within this range,
its convergence is computed as∼ 3.9 % (i.e., 2/51), and so
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on. With this simple metric, we can not only determine the
overall percentage of hours when the difference was within
this uncertainty range (obtained at the end of the simulation),
but also how the convergence evolves as the simulation pe-
riod progresses.

At the Kendall site, the results suggest overall improved
performance of Noah for all soil layers (including those
beyond the sensor effective depth) when observed neutron
counts are assimilated, regardless of the availability of obser-
vations (Fig. 6a–f). Differences between DA 1-hour and DA
2-day cases are larger at deeper soil layers, with DA 1-hour
showing superior performance. For the no DA case, only the
soil moisture at the first layer in the model is within the un-
certainty range for the majority of the simulated period. The
soil moisture for the DA 2-day case compares relatively well
with the true soil moisture at the first two layers, but esti-
mated soil moisture in the third layer is almost always out-
side of the uncertainty range. The DA 1-hour case, however,
shows a remarkable response to neutron count and effectively
simulates the soil moisture dynamics at all Noah soil layers
(basic statistics are calculated and presented in Table 4).

The convergence calculated for the Kendall site suggests
that, overall, soil moisture is constrained more effectively
when observations of cosmic-ray neutrons are assimilated
into Noah (Fig. 6g–i). For the first soil layer, total conver-
gence levels are high in all cases and little difference is ob-
served between the two DA cases. The benefit of assimilat-
ing observed neutron counts is more clear in the results for
the second layer, with no substantial differences between the
high- and low-frequency assimilation strategies. However,
the impact of higher-retrieval frequency becomes evident in
the third soil layer in which soil moisture is only successfully
constrained in the DA 1-hour case.

The results from the Nebraska and Park Falls sites
are comparable and they show superior performance of
Noah when assimilating neutron counts at high-frequency
(Figs. 7a–f and 8a–f). Surprisingly, for the first two soil lay-
ers in Noah, the dynamics of soil moisture obtained from the
ensemble average for DA 2-day is similar to the model be-
havior for the no DA case. In addition, no DA soil moisture
at the deepest analyzed layer at the Nebraska site follows the
true soil moisture states quite well. This is likely related to
the fact that the initial conditions randomly obtained in the
model were already similar to the true soil moisture state (in
terms of ensemble averages) for the no DA case, although the
overall magnitude of the spread is much larger compared to
assimilation cases (Table 4). At Park Falls, the results from
the deepest soil layer analyzed show superior performance of
DA 1-hour while no DA and DA 2-day have similar dynam-
ics, especially after late June.

The convergence criterion computed for the first two soil
layers in Noah at the Nebraska and Park Falls sites (Figs. 7g–
h and 8g–h) are slightly different from the results discussed
for the Kendall site (Fig. 6g–h). First, the percentage of
points within the uncertainty range at these two sites is

greater than the percentage values obtained at Kendall (com-
pare, for instance, the DA 1-hour case across all sites). There
is a much sharper increase in the convergence criterion with
time at these two sites, as opposed to the pattern observed for
Kendall. However, unlike the Kendall site, where the patterns
of both DA cases were somewhat similar, it is much clearer
for both the Nebraska and Park Falls cases that the DA 1-
hour is able to update soil moisture much more rapidly than
the DA 2-day when compared to the response to the no DA
case. As mentioned previously, the convergence results for
the no DA case at the third soil layer in the model are likely
to be related to the initial conditions from the ensemble mean
being already too close to the true states (Figs. 6i and 7i).

4.3 Impact of retrieval frequency on simulated soil
moisture dynamics

The previous sub-section reports the improved ability of
Noah to estimate soil moisture profiles when assimilating
cosmic-ray neutron counts measured aboveground, and in-
cluded some initial comparison between assimilation fre-
quencies (DA 1-hour and DA 2-day). In this section, we com-
pare the “average” performance of Noah for continuous pe-
riods of 2 days after the cosmic-ray neutron measurement
is assimilated into the model throughout the simulation pe-
riod. The aim is to evaluate the Noah performance within
individual time windows when neutron measurements are as-
similated every 2 days, every hour, or not assimilated at all.
In this study, the RMSE of soil moisture is calculated with
respect to the true state for a fixed time window of 2 days
applied throughout the entire simulation period. For com-
parison, the results discussed in the previous section were
based on actual model simulations at hourly timescales. The
results are presented in Fig. 9 with top, middle, and bottom
rows, corresponding respectively to the Kendall, Nebraska,
and Park Falls sites, with left and right columns correspond-
ing to the shallowest and deepest Noah soil layers analyzed in
this study (same color coding as shown in previous figures).

The first noticeable result from Fig. 9 is that the aver-
age performance of Noah (i.e., using the 2-day time win-
dows) when trying to simulate true soil moisture profiles is
best when neutron measurements are assimilated at hourly
timescales (i.e., DA 1-hour) at all sites. At the Kendall site,
which is characterized by a long dry period followed by the
monsoon onset early in July, the performance of Noah for
the DA 2-day case is similar to that obtained with DA 1-hour
at the first two layers of the model (Fig. 9a–b), and slightly
worse at the deepest layer (Fig. 9c). Surprisingly, a differ-
ent pattern emerges from both the Nebraska and Park Falls
sites at which an initial period of frequent rainfall is fol-
lowed by a relatively long dry period, which also starts in
July (Fig. 9d–i). In those cases, the performance of DA 2-
day is not improved substantially in comparison to no DA,
and a noticeable increase in RMSE is observed in both cases
right after rainfall ceases in July. Unlike the DA 1-hour case,
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Nebraska: Soil layer 0-10 cm
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Nebraska: Soil layer 40-100 cm
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Park Falls: Soil layer 0-10 cm
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Park Falls: Soil layer 10-40 cm
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Park Falls: Soil layer 40-100 cm

Figure 9. Comparison of Noah performance in representing soil moisture dynamics for the first three soil layers with respect to the true soil
moisture state. The metric used is the Root-Mean-Squared Error (RMSE) calculated over individual 2-day periods continuously. Results are
shown for Noah without (no DA) and with data assimilation, characterized by low- and high-frequency retrievals (respectively, DA 2-day
and DA 1-hour). The ensemble mean of the prior distribution is used for all ensemble simulations.

the DA 2-day case allows for Noah to freely advance in time
for the rest of the 2-day period once it has assimilated the
neutron count measurement, and, because the true simula-
tion was generated with a different set of parameters than the
cases analyzed here, model simulations in the DA 2-day case
are unable to represent the dynamics of dry-down appropri-
ately due to different soil properties. The lack of rainfall, in
this case, reduces the potential magnitude for soil moisture
updates (i.e., “model innovation”), and hence the dynamics
of the model are little improved. The results shown here sug-
gest that the performance of summertime cosmic-ray neutron
data assimilation may be slightly dependent on climatologi-
cal conditions (i.e., meteorological forcing) and the period
during which rainfall occurs in the summer. Moreover, it de-
pends on model uncertainties due to lack of representative-
ness of key soil and vegetation properties at the scale of in-
terest (here, accounted for by the fact that true soil moisture
is generated from a model simulation obtained with slightly
perturbed parameter values).

5 Summary and conclusions

The use of cosmic-ray neutron sensors for soil moisture mon-
itoring has been fast growing because the technique provides
root-zone soil moisture estimates at unprecedented spatial
scales and at high temporal resolution. This paper evaluates
the ability of a land surface model to translate the infor-
mation obtained from cosmic-ray neutrons observed above-
ground into soil moisture estimates for individual soil layers.
A nearly-identical twin experiment approach is adopted in

which observations of cosmic-ray neutrons were generated
from a land surface model with a slightly different configu-
ration (perturbed key soil and vegetation parameters). Below,
we discuss the implications and summarize the main findings
of this work.

How effectively is the information from aboveground
cosmic-ray neutrons translated to individual soil
moisture layers in the model?

When assimilating neutron counts at high frequency, the per-
formance of the land surface model is remarkably improved
in comparison with the soil moisture profiles simulated with-
out data assimilation. This finding is observed for all three
biomes with a degree of improvement varying slightly from
site to site. Of importance, we found that water in the soil
is better estimated at depths well below the effective sen-
sor depth and encompassing the entire rooting zone in the
model. Therefore, the high observational frequency of the
cosmic-ray sensors can potentially introduce additional ben-
efits relative to assimilating local/regional soil moisture ob-
servations from satellite remote-sensing products available
at coarser temporal resolution. However, care must be taken
when accounting for measurement uncertainty by removing
any potential signal in the measurement from other sources
of hydrogen (atmospheric water vapor, water in biomass),
hence isolating or maximizing the soil moisture information
content in the measurement. Another important aspect is to
ensure sufficient ensemble spread from the model to avoid,
for instance, filter divergence (overconfidence in the model),
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or, alternatively, directly inserting observations with little or
no model influence (overconfidence in the observations) (An-
derson, 2007; Hamill et al., 2001; Houtekamer and Mitchell,
1998).

How does frequency of available observations of
cosmic-ray neutrons influence model performance?

We use the RMSE calculated for every 2-day time window
as a metric for model performance. At the Kendall site, DA
1-hour and DA 2-day showed good agreement for soil mois-
ture in the first two layers of the model (0–10 and 10–40 cm).
However, the benefits of high-frequency retrievals in the case
of cosmic-ray neutron observations is also observed for the
third soil layer in Noah (40–100 cm), where DA 1-hour is
much superior to DA 2-day. Particularly to the Noah, the dis-
tribution of roots is directly proportional to the thickness of
each soil layer. Therefore, the third layer of the model plays a
significant role in determining evapotranspiration rates at the
surface. Summertime is characterized by an initial relatively
dry period, which lasts for about 2 months, followed by the
monsoon.

Unlike the results at Kendall, the comparison between DA
1-hour and DA 2-day for Nebraska and Park Falls suggest
that the performance of Noah for the DA 1-hour case is al-
ways superior to that from DA 2-day in all soil layers ana-
lyzed. Surprisingly, the model performance for the DA 2-day
case is not much different from simulations made without
assimilating cosmic-ray neutron counts (i.e., no DA case).
A distinct characteristic from both the Nebraska and Park
Falls sites in comparison to Kendall is the overall dynam-
ics of soil water in the summertime. At Nebraska and Park
Falls, a relatively wet period with frequent rainfall is ob-
served at the beginning of the summertime period, lasting for
about 2 months, and followed by a relatively dry period with
low or no rainfall. Overall, the benefits of assimilating neu-
tron measurements at relatively higher frequency are more
clearly observed at the Nebraska and Park Falls sites rela-
tive to the semi-arid Kendall. This could indicate that the
assimilation performance of summertime cosmic-ray mea-
surements at high temporal resolution may depend not only
on heterogeneity of soil properties (accounted for by slightly
perturbing model parameter from true soil moisture states),
but also slightly on meteorological forcing and its climatol-
ogy (namely, rainfall). Also, these findings suggest an im-
portant role of high-frequency measurements to better con-
strain soil moisture states simulated by hydrometeorological
models when applied to drought monitoring, given that the
summer of 2012 was one of the driest on record in the Mid-
western USA region.

Due to the characteristics of the sensor, the integration
time used to compute neutron intensity should potentially be
longer than 1 h at some locations. In practice, this is done to
reduce the uncertainty in the measurement and consequently

ensure an accurate estimate of soil moisture. For instance,
neutron count rates integrated over the entire day were used
in a humid forest ecosystem located in the west of Germany,
because hourly count rates were too low for accurate soil
moisture measurements (Bogena et al., 2013). The results
presented in our study show that care must be taken when
integrating the cosmic-ray measurements over a longer pe-
riod while combining with models, suggesting a potential
trade-off between individual sensor accuracy and successful
representation of soil moisture profile dynamics. This could
imply in an “optimal range” for integration of neutron counts
for a specific site location, but the investigation is beyond the
scope of this study. For example, our initial preliminary anal-
ysis indicated little difference between the DA 2-day case
with another assimilation case where neutron measurements
were assimilated daily.

This study focused on the analysis using synthetic ob-
servations, mainly because (1) there is a lack of indepen-
dent soil moisture observations corresponding to a similar
effective horizontal area measured by the cosmic-ray sen-
sor, and (2) the neutron intensity signal is entirely derived
from soil moisture dynamics, which allows us to focus on
the key aspects of the neutron–soil moisture interactions.
Neither the COSMIC operator nor the Noah have explic-
itly dealt with additional sources of hydrogen (Franz et al.,
2013a) other than the lattice water (explicitly described by a
parameter in COSMIC; see Shuttleworth et al., 2013). Typi-
cal sources include surface water (Franz et al., 2012a), atmo-
spheric water vapor (Rosolem et al., 2013), biomass (Franz
et al., 2013b), and litter layer, soil organic matter and below-
ground biomass (Bogena et al., 2013). For instance, changes
in biomass over time may become important, especially at
the Nebraska (cropland) site. However, as with any OSSE,
there are some limitations in our approach because the uncer-
tainties due to the above-mentioned sources of hydrogen are
not introduced in the measurements. Furthermore, any poten-
tial structural deficiency in Noah when simulating soil mois-
ture is ignored in this OSSE, hence model adjustments need
not be applied to remove or reduce systematic biases (Draper
et al., 2011; Kumar et al., 2012; Yilmaz and Crow, 2013).
As a consequence, the results from this OSSEare likely to
indicate better agreement relative to those obtained from as-
similation of real neutron measurements. The assimilation
of actual cosmic-ray neutron measurements will be inves-
tigated in the near future (e.g.,http://www.bris.ac.uk/news/
2014/august/soilmoistureand-cosmic-rays.html).

Finally, these results can also give some additional insights
into applications of data assimilation to satellite remote-
sensing products, whose measurements are provided glob-
ally at coarser temporal resolution. However, it is not the
intention of the present study to directly compare the value
of the cosmic-ray observations with more traditional satellite
remote-sensing products, especially because their horizontal
effective measurement areas are quite different (Robinson et
al., 2008) and hence are likely to be influenced differently
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by distinct factors (see Fig. 1 in Crow et al., 2012). Such
analyses are beyond the scope of this study, but we encour-
age the use of cosmic-ray sensors in combination with satel-
lite remote-sensing products for hydrometeorological appli-
cations because the information content from each measure-
ment can be strongly linked to their individual dynamics.

The Supplement related to this article is available online
at doi:10.5194/hess-18-4363-2014-supplement.
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