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[1] Accurate estimates of biomass are imperative for under-
standing the global carbon cycle. However, measurements of
biomass and water in the biomass are difficult to obtain at a
scale consistent with measurements of mass and energy
transfer, ~1 km, leading to substantial uncertainty in dynamic
global vegetation models. Here we use a novel cosmic ray
neutron method to estimate a stoichiometric predictor of
ecosystem-scale biomass and biomass water equivalent over
tens of hectares. We present two experimental studies, one in
a ponderosa pine forest and the other in a maize field, where
neutron-derived estimates of biomass water equivalent are
compared and found consistent with direct observations.
Given the new hectometer scale of nondestructive observation
and potential for continuous measurements, we anticipate
this technique to be useful to many scientific disciplines.
Citation: Franz, T. E., M. Zreda, R. Rosolem, B. K. Hombuckle,
S. L. Irvin, H. Adams, T. E. Kolb, C. Zweck, and W. J. Shuttleworth
(2013), Ecosystem-scale measurements of biomass water using cosmic
ray neutrons, Geophys. Res. Lett., 40,3929-3933, doi:10.1002/grl.50791.

1. Introduction

[2] Knowledge of biomass is critical for understanding
the global carbon cycle. Observed [Korner et al., 2005;
Luyssaert et al., 2008] and modeled carbon budgets
[Purves and Pacala, 2008] differ significantly in forest eco-
systems partly because it is hard to reconcile measurements
of leaf-level photosynthesis with measurements of stand-
scale mass and energy transfer [Ozanne et al., 2003]. This
disconnect in observation scales limits understanding of
ecosystem function [Enquist et al., 2003] and contributes
substantially to uncertainty in dynamic global vegetation
models (DGVM) [Purves and Pacala, 2008]. Global
climate models that include DGVM exhibit improved
carbon cycle simulations when accurate biomass data are
included [Creutzig et al., 2012].
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[3] Accurate measurements of area-average biomass are
difficult to obtain [Jenkins et al., 2003] at a scale consistent
with measurements of mass and energy transfer, ~1 km.
There are three common methods for the monitoring of
terrestrial carbon storage in vegetation: forest allometry
measurements [Jenkins et al., 2003], remote sensing of
two-dimensional vegetation greenness [Hansen et al.,
2000], and light detection and ranging (LiDAR) techniques
[Lefsky et al., 2002]. In all three techniques, dry biomass is
estimated through allometric relationships based on plant
dimensions and then converted to carbon using stoichiometry
(Figure S1 in the supporting information). However, allome-
tric approaches are labor intensive, dependent on local
species, and often biased toward smaller tree size classes with
uncertainties up to 30% [Jenkins et al., 2003]. While recent
advances in the terrestrial and airborne LIDAR method allow
the possibility of fine-scale volume and surface area informa-
tion, shadowing effects from dense canopies can limit the
applicability of the technique, requiring multiple vantage points
and significant data processing [Loudermilk et al., 2009].

[4] Here we use a novel cosmic ray neutron method [Zreda
et al., 2008] to estimate average biomass water equivalent,
and thus biomass through stoichiometry, over an area of tens
of hectares [Desilets and Zreda, 2013]. The method provides
an integrated measure of both fixed biological hydrogen in
the plant tissue and biological water contained in the plant
xylem and other tissues, the sum of which we call biomass
water equivalent (BWE; Figure S1). Although neutron inten-
sity depends on all hydrogen pools near the ground [Zreda
et al., 2012], we are able to isolate the biomass water signal
using measurements of neutron intensity, soil water content,
soil mineral water, and atmospheric water vapor [Franz
et al., 2013]. In this work we present two experimental stud-
ies in forest and agricultural settings that give snapshots in
time of neutron-derived estimates of biomass water that are
consistent with direct observations. Given the spatial scale
of observations and potential for continuous estimates of
biomass water equivalent, this method could fill a critical
observation gap in monitoring ecosystem-scale carbon and
water dynamics.

2. Cosmic Ray Neutron Method

2.1. Background of Cosmic Rays on Earth
and Neutron Detection

[s] Victor Hess received the Nobel Prize in Physics (1936)
for his discovery of cosmic rays in 1912. During the
midtwentieth century, scientists found, through both theoret-
ical and experimental work, that the intensity of low-energy
cosmic ray neutrons depends on the chemical composition
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of the material, in particular the medium’s hydrogen content
due to its high moderation power (as summarized with refer-
ences in Zreda et al. [2012]). Fast neutrons (~1 MeV), a ter-
tiary cosmic ray flux created by high-energy secondary
cosmic ray neutrons, exist in a well-mixed reservoir compris-
ing soil and air [Zreda et al., 2012]. During the moderation
process, fast neutrons can mix at the scale of hundreds of me-
ters in air and tens of centimeters in soil [Desilets, 2011].

[6] The principles of neutron detection with proportional
counters are well established [Knoll, 2000]. Here we use
the moderated or fast neutron detector implemented in the
COsmic-ray Soil Moisture Observing System (COSMOS)
[Zreda et al., 2012]. The fast neutron detector is shielded
by 2.5cm of plastic, making it most sensitive to neutrons
between 1 and 1000eV [Desilets, 2011]. We note from
neutron transport modeling that the relationship between aver-
age hydrogen content and neutron flux is nearly identical over
these energy ranges (T. E. Franz, unpublished data, 2013).

2.2. Estimation of Biomass Water Equivalent Using
Fast Neutron Intensity

[7] While the fast neutron detector used here was origi-
nally designed to measure soil water dynamics in the near
surface over large horizontal areas (~28 ha, a circle with
radius of ~300 m at sea level in dry air [Desilets and Zreda,
2013], vertical depths of ~10cm in wet soil and ~70 cm in
dry soil [Zreda et al., 2008]), it is sensitive to all hydrogen
inside its measurement volume [Zreda et al., 2012]. By inde-
pendently quantifying soil moisture (and other nonbiomass
hydrogen pools) with direct sampling, we are able to isolate
the biomass water signal component in the fast neutron inten-
sity measurements following the framework outlined in
[Franz et al., 2013]. Because soil water is typically the
largest pool of hydrogen present in the near surface, its uncer-
tainty will control the measurement precision of the biomass
hydrogen pool. Despite the large horizontal and vertical
heterogeneity, we found from extensive soil moisture field
sampling at numerous COSMOS sites (108 total samples
collected at each site at six depths, 0—30cm every 5cm,
and 18 horizontal locations, 0-360° every 60°, and radii of
25, 75, and 200 m) that the standard error of the mean soil
moisture as a function of mean soil moisture has a parabolic
shape with a maximum value of 0.008 m*/m> equivalent to
2.4mm of water or 2.4kg/m* at a soil water content of
0.275 m*/m?* (Figure S2).

[8] In order to isolate the biomass water signal from the
convoluted fast neutron intensity measurements, we need to
make several assumptions and simplifications about the
instrument support volume, instrument sensitivity, estima-
tion of various hydrogen pools inside the support volume
through direct sampling, and distribution of hydrogen pools
within the support volume. Because the various hydrogen
pools can be aggregated in a thin layer (i.e., soil pore water,
soil mineral water, and vegetation) or dispersed across the
entire support volume (i.e., water vapor and forests), our
framework either directly accounts for the mass of the hydro-
gen pool or removes its signal from the convoluted signal
using derived relationships from neutron transport simula-
tions [Franz et al., 2013; Zreda et al., 2012].

[v] Here we assume that the instrument support volume
(86% cumulative sensitivity) is a hemisphere above the sur-
face with a constant radius of 300 m as defined by previous
work [Desilets and Zreda, 2013; Zreda et al., 2008]. We note

that Desilets and Zreda [2013] found that the support radius
is reduced by 20 m per additional 10 g of water per kilogram
of air but does increase with elevation above sea level. In
order to remove the water vapor component from the fast
neutron intensity measurements, we use measurements of
surface air temperature, air pressure, and relative humidity
to determine the absolute humidity [Rosolem et al., 2013].
Rosolem et al. [2013] found the neutron correction factor as

CWV = 1 +0.0054(p? — p") (1)

v

where CWV is the scaling factor for temporal changes in
cosmic ray intensity as a function of changes in atmospheric
water vapor, p° (g m~>) is the absolute humidity at the sur-
face, and pief (gm~?) is the absolute humidity at the surface
at a reference condition (here we use dry air, p' =0 ).

[10] Because vegetation in forests may be distributed in
clumps across the support volume, we introduce an addi-
tional correction factor relating the efficiency of neutron
moderation from discrete objects versus an equivalent layer
of water on the surface (CBWE). Neutron transport simula-
tions indicate that the equivalent layer efficiency factor
depends on both the total volume and surface area of tree
trunks (Figure S3). Therefore, a priori information is needed
about the size and distribution of trunks inside the measure-
ment volume. We note that the support radius and depth will
be only slightly reduced by the presence of aboveground
biomass given the large open space for neutrons to travel
unimpeded. In order to correct for dispersed hydrogen pools
above the surface, we define the dry atmosphere neutron
counting rate N (counts per hour, cph) as

N = Np2 x CWV x CBWE @)

where N » is the level 2 neutron counting rate (http://cosmos.
hwr.arizona.edu/) previously corrected for variations in
incoming high-energy particles and absolute pressure devia-
tions [Zreda et al., 2012].

[11] Below the surface, we assume that the support volume
is a cylinder with a fixed radius of 300 m and a depth that
varies with surface water, soil pore water, mineral water,
and bulk density. Assuming no surface water and uniform
distributions of soil pore water, mineral water, and bulk
density, Franz et al. [2012] found the effective sensing
depth z* (cm) to be approximated by the following equation
[Franz et al., 2012]:

5.8

* _ 3
© T Bi(r1S0C) + 60 1 0.0829 ®)

where 5.8 (cm) represents the 86% cumulative sensitivity
depth of low-energy neutrons in liquid water; 0.0829 is con-
trolled by the nuclear cross sections of SiO»; p,, is the dry
bulk density of soil (gcm~>); p,, is the density of liquid water
assumed to be 1 (gecm™%); 7 is the weight fraction of lattice
water in the mineral grains and bound water, defined as the
amount of water released at 1000°C preceded by drying at
105°C (gram of water per gram of dry minerals); and SOC
is the soil organic carbon (gram of water per gram of dry
minerals, estimated from stoichiometry using measurements
of total soil carbon, TC, and soil CO,, SOC = TC — }M—%COZ).
Here measurements of lattice water, total soil carbon, and soil
CO, were made on an ~100 g composite sample (subsampled
from the 108 soil moisture samples) collected at the study site
and analyzed at Actlabs Inc. of Ontario, Canada.
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Figure 1. Time series of daily fast neutron counts at the
study sites near Flagstaff, AZ, USA. One cosmic ray neutron
probe was placed in a burned area, wildfire (brown line), and
the other 3 km away in an intact ponderosa pine forest (green
line). The sharp decreases in neutron counts are due to rain-
fall, and the slow increases in neutrons counts are due to loss
of soil water to evapotranspiration and deep infiltration.
Because of the additional hydrogen in the intact ponderosa
pine forest, the neutron counts are consistently lower at
that site throughout the year. Note that the daily averaged
Poisson counting rate uncertainty is between 7 and 9 cph
and that there is an inverse relationship between neutron
counts and total hydrogen present because of hydrogen’s
high efficiency in removing neutrons.

[12] With the estimates of sensor support volume, we can
compute the mass and molar mass of each element in the sys-
tem. We assume that the atmosphere is composed of only ni-
trogen (79% by mass) and oxygen (21% by mass) and
follows a standard lapse rate. We further assume that the
subsurface is composed of solid grains (pure quartz, SiO,,
lattice water, and SOC water equivalent) and soil pore water.
Here we assume that the wet aboveground biomass, AGB
(kg/m?), is composed of only water (50% by mass) and
cellulose (C¢H19Os5, 50% by mass) but note that this is depen-
dent on plant species and time and should be quantified
directly. With the estimates of volume, mass, and chemical
composition, we can calculate the hydrogen molar fraction,
hmf (mol mol™?), in the cosmic ray probe support volume as

2H H; + Hsoc + Hp + Hacs
2A4; NO + SiO; + H,0; + HyOs0c + H209 + CsH19O0s+H>0ac8

4)

where ) H; is the sum of hydrogen moles from lattice water
H,, soil organic carbon water equivalent Hgoc, pore water
Hy, and vegetation Hagp inside the support volume, and
> A; is the sum of all moles from air NO, soil SiO,, lattice
water H,O,, soil organic carbon water equivalent H,Ogoc, pore
water H,O,, and aboveground biomass CsH;¢Os+H,OaGr
inside the support volume.

[13] Using neutron transport modeling simulations of
various soil chemistries, Franz et al. [2013] derived a single
relationship between hmf and relative neutron counts:

N
o= 4.486 exp(—48.1 x hmf) + 4.195 exp(—6.181 x hmf) (5)
s

hmf =

where N, represents the site- and instrument-specific fast
neutron count rate at saturation (i.e., over liquid water, where
the count rates approach a constant value). We note that in this
work, we used a single known value of Amf and the

corresponding N to specify the free parameter Ng in order
to minimize site, instrument, and sampling uncertainties.
By measuring (either at one snapshot in time or continuously)
fast neutron intensity, water vapor, soil pore water, and soil min-
eral water, estimates of BWE (=0.556*C¢H;¢O5+H>04p5)
can be calculated using equations (1) to (5).

3. Biomass and Biological Water Content

3.1. Estimates of Forest Biomass

[14] To evaluate forest biomass and BWE, a semiarid site
near Flagstaff, AZ, USA was instrumented with two identical
neutron probes (CRS-1000/B), placed 3 km apart: one in a
ponderosa pine forest (35°26'19”"N, 111°48'13"W) and the
other in an area burned by wildfire in 1996 (35°26'44"N,
111°46'19"W) [Dore et al., 2010]. We note that the probes
were tested side by side over an 18 h period and were found
statistically identical. The measured fast neutron count rate
at the ponderosa pine site was consistently ~100 cph lower
than that at the wildfire site (Figure 1). This difference can
be attributed to more efficient removal of fast neutrons by
the additional hydrogen present in the aboveground biomass
at the forest site (Table S1). Measurements at the burned site
and surrounding ponderosa pine forest give similar below-
ground carbon pools (~7 kg C/m? in Dore et al. [2010] and
Table S1). Stem density measurements [ Dore et al., 2010,
Figure 1], carbon pool estimates [Dore et al., 2010,
Table 4], and allometric relationships of the stem density
measurements [Jenkins et al., 2003] give the aboveground
wet ponderosa pine biomass between 16 and 31 kg/m?. By
solving equations (1) to (5) using independent measurements
of water in soil minerals, soil pore water, atmospheric water

Agricultural Observational Study

[l Measured Above-Ground Biological Water
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Figure 2. Measured aboveground biological water (green
area), sum of measured aboveground biological water and
fixed biological hydrogen (yellow +green area), and neu-
tron-derived aboveground and belowground biomass water
equivalent (blue line) at the Iowa validation site for one rota-
tion of maize. The differences in the neutron-derived BWE
values are likely due to the presence of roots and residue
(dead plant material) that is left on the soil surface after
harvest. Soil tillage between the March and May 2012 mea-
surements promoted the decomposition of the root and residue
BWE. Note that the standard error of the mean was estimated
from the uncertainty in the soil pore water samples (Table S2)
and that the ratio of the green to yellow + green area gives the
fraction of biological to total water inside the maize.
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vapor, and fast neutron intensity, we found that the neutron-
derived BWE of 26.9 + I mm at the ponderosa pine site was
within 1 standard error of 22.5+4, 342+10, and
323+ 11 mm obtained using three different independent
allometric methods (Figure S4 and Tables S1-S3).

3.2. Estimates of Maize Biomass

[15] The second study was conducted at the lowa valida-
tion site (IVS; 41°59'0"N, 93°41'1"W) where a neutron
detector (CRS-1000) was placed in the agricultural field in
September 2010. The field is 1 km x 1 km with yearly rota-
tion between soy (even years) and maize (odd years).
Estimates of water in soil minerals, soil pore water, atmo-
spheric water vapor, and aboveground fixed hydrogen and
biological water were made eight times between May 2011
and May 2012 (Table S1). These measurements were used
to compute the neutron-derived BWE at various stages of
maize development throughout the season (Figure 2). In
early growth stages (May to June), the maize comprises over
90% water when rapidly growing both above and below
ground. During flowering, fruit development, and ripening
(July to August), the aboveground biological water dropped
to below 70%. Comparisons of observed aboveground fixed
biological hydrogen and biological water with neutron-
derived BWE show similar overall behavior over the year
but with several key differences (Figure 2). Because of the
hydrogen in roots, the neutron-derived BWE was higher
than the aboveground observations and exhibits different
behaviors during the most active period of maize growth
(July 2011). After harvesting (September 2011), the neutron-
derived BWE remained constant over the winter months as
the rootstock and dead plant material (residue) remain in the
soil and on the soil surface. After soil temperatures increase
and tillage occurs (May 2012), the neutron-derived BWE
returned to near zero (premaize conditions) because of the
(1) corresponding decrease in aboveground storage in residue,
(2) decomposition of root mass and residue, and (3) mechani-
cal vertical mixing of root mass and residue during soil tillage
below the probe measurement depth of ~20-30 cm.

4. Discussion and Limitations of the Study

[16] These two field experiments demonstrate that mea-
surements of cosmic ray neutrons can provide precise and
accurate estimates of area-average BWE for a ponderosa
pine forest and a maize field. But there are a few caveats
that should be kept in mind when using neutrons to
estimate BWE.

[17] First, because the water in the soil pore space is the
largest pool of hydrogen (between 6 and 9 cm of water in
the top 30 cm of soil at these two sites) and most variable in
time, the precision of neutron-derived BWE estimates is
primarily controlled by the standard error of the mean soil
moisture measurement (Figure S2). Using the 108-sample
COSMOS soil moisture protocol, we found that the standard
error of the mean soil moisture had a maximum value of
around 0.008 m*/m> or 2.4 mm of water or 2.4 kg/m?, thus
defining the maximum precision of the technique given no
other sources of uncertainty. While the 108 samples can
usually be collected over several hours at a site, the method-
ology is still labor intensive in order to achieve the desired
level of precision to be consistent with species-specific
allometric relationships [Jenkins et al., 2003].

[18] Second, integrated water vapor in the layer of air
between the land surface and ~300m above the surface
may change seasonally by up to 1cm of liquid water
[Rosolem et al., 2013], which is about the same magnitude
as the seasonal variations in maize and total aboveground
biomass at the ponderosa pine forest. Therefore, measure-
ments of atmospheric water vapor are critical to detect the
BWE signal from the integrated fast neutron intensity data.

[19] Third, the framework used to deconvolve the fast
neutron intensity signal summarized in equations (1) to (5)
[Franz et al., 2013] required an efficiency factor (Figure
S3) to convert the dispersed hydrogen of trees into an
equivalent layer. Future observational and theoretical
work should focus on validating these efficiency factors in
various forests.

[20] Fourth, the belowground biomass and crop residue
were found to be two important pools that we did not explic-
itly quantify in the maize IVS study. While our results
demonstrate that these pools could be quantified with the cos-
mic ray neutron methodology, future studies can improve on
these estimates. We also note that by comparing the neutron-
derived BWE with observed AGB in early maize growth
stages, the belowground component was significantly higher
(~2 to 3) than published root to shoot values (~1) [Anderson,
1988], but these values should be validated in future work.
Given the importance of root density for water uptake,
measurements of root mass at large scales may be useful in
helping parameterize and calibrate large-scale crop models.
In addition, the slow decay or long turnover time of plant
residue is a potentially huge and poorly known carbon source
[Schmidt et al., 2011]. The neutron-derived measurements of
water equivalence presented here suggest that this technique
may be useful in estimating large-scale turnover times of soil
organic hydrocarbons in the near surface.

[21] Acknowledgments. This research and the COSMOS project
are supported by the U.S. National Science Foundation under grant AGS-
0838491. The fundamental work on the systematics of low-energy neutrons
at the earth’s surface was funded by the U.S. National Science Foundation
under grants EAR-01-26241, EAR-0345440, and EAR-0636110.

[22] The Editor thanks Heye Bogena for assistance in evaluating
this paper.

References

Anderson, E. L. (1988), Tillage and N fertilization effects on maize root
growth and root:shoot ratio, Plant Soil, 108, 245-251.

Creutzig, F., A. Popp, R. Plevin, G. Luderer, J. Minx, and O. Edenhofer
(2012), Reconciling top-down and bottom-up modelling on future
bioenergy deployment, Nat. Clim. Chang., 2(5), 320-327, doi:10.1038/
nclimate1416.

Desilets, D. (2011), Sandia Report: SAND2011-1101, Radius of influence
for a cosmic-ray soil moisture probe: Theory and Monte Carlo simula-
tions, Sandia National Laboratories, Albuquerque, New Mexico 87185
and Livermore, California 94550.

Desilets, D., and M. Zreda (2013), Footprint diameter for a cosmic-ray soil
moisture probe: Theory and Monte Carlo simulations, Water Resour.
Res., 49, 3566-3575, doi:10.1002/wrcr.20187.

Dore, S., T. E. Kolb, M. Montes-Helu, S. E. Eckert, B. W. Sullivan,
B. A. Hungate, J. P. Kaye, S. C. Hart, G. W. Koch, and A. Finkral
(2010), Carbon and water fluxes from ponderosa pine forests disturbed
by wildfire and thinning, Ecol. Appl., 20(3), 663—683, doi:10.1890/09-
0934.1.

Enquist, B. J., E. P. Economo, T. E. Huxman, A. P. Allen, D. D. Ignace, and
J. F. Gillooly (2003), Scaling metabolism from organisms to ecosystems,
Nature, 423(6940), 639-642, doi:10.1038/nature01671.

Franz, T. E., M. Zreda, P. A. Ferre, R. Rosolem, C. Zweck, S. Stillman,
X. Zeng, and W. J. Shuttleworth (2012), Measurement depth of the cosmic-
ray soil moisture probe affected by hydrogen from various sources, Water
Resour. Res., 48, W08515, doi:10.1029/2012WRO011871.

3932



FRANZ ET AL.: ECOSYSTEM MEASUREMENTS OF BIOMASS WATER

Franz, T. E., M. Zreda, R. Rosolem, and P. A. Ferre (2013), A universal calibra-
tion function for determination of soil moisture with cosmic-ray neutrons,
Hydrol. Earth Syst. Sci., 17, 453-460, doi:10.5194/hess-17-453-2013.

Hansen, M. C., R. S. Defries, J. R. G. Townshend, and R. Sohlberg (2000),
Global land cover classification at 1km spatial resolution using a classifi-
cation tree approach, Int. J. Remote Sens., 21(6-7), 1331-1364.

Jenkins, J. C., D. C. Chojnacky, L. S. Heath, and R. A. Birdsey (2003),
National-scale biomass estimators for United States tree species, For. Sci.,
49(1), 12-35.

Knoll, G. F. (2000), Radiation Detection and Measurement, John Wiley &
Sons, Inc., Hoboken, NJ.

Komer, C., R. Asshoff, O. Bignucolo, S. Hattenschwiler, S. G. Keel,
S. Pelaez-Riedl, S. Pepin, R. T. W. Siegwolf, and G. Zotz (2005), Carbon
flux and growth in mature deciduous forest trees exposed to elevated
CQO2, Science, 309(5739), 1360—1362, doi:10.1126/science.1113977.

Lefsky, M. A., W. B. Cohen, G. G. Parker, and D. J. Harding (2002), Lidar
remote sensing for ecosystem studies, BioScience, 52(1), 19-30,
doi:10.1641/0006-3568(2002)052[0019:1rsfes]2.0.co;2.

Loudermilk, E. L., J. K. Hiers, J. J. O’Brien, R. J. Mitchell, A. Singhania,
J. C. Fernandez, W. P. Cropper, and K. C. Slatton (2009), Ground-based
LIDAR: A novel approach to quantify fine-scale fuelbed characteristics,
Int. J. Wildland Fire, 18(6), 676685, doi:10.1071/wf07138.

3933

Luyssaert, S., E. D. Schulze, A. Borner, A. Knohl, D. Hessenmoller, B. E. Law,
P. Ciais, and J. Grace (2008), Old-growth forests as global carbon sinks,
Nature, 455(7210), 213-215, doi:10.1038/nature07276.

Ozanne, C. M. P., et al. (2003), Biodiversity meets the atmosphere: A global
view of forest canopies, Science, 301(5630), 183—186, doi:10.1126/
science.1084507.

Purves, D., and S. Pacala (2008), Predictive models of forest dynamics,
Science, 320(5882), 1452—1453, doi:10.1126/science.1155359.

Rosolem, R., W. J. Shuttleworth, M. Zreda, T. E. Franz, X. Zeng, and
S. A. Kurc (2013), The effect of atmospheric water vapor on the
cosmic-ray soil moisture signal, J. Hydrometeorol., doi:10.1175/JHM-
D-12-0120.1.

Schmidt, M. W. 1., et al. (2011), Persistence of soil organic matter as an
ecosystem property, Nature, 478(7367), 49-56, doi:10.1038/nature10386.

Zreda, M., D. Desilets, T. P. A. Ferre, and R. L. Scott (2008), Measuring soil
moisture content non-invasively at intermediate spatial scale using
cosmic-ray neutrons, Geophys. Res. Lett., 35, 121402, doi:10.1029/
2008g1035655.

Zreda, M., W. J. Shuttleworth, X. Xeng, C. Zweck, D. Desilets, T. E. Franz,
and R. Rosolem (2012), COSMOS: The COsmic-ray Soil Moisture
Observing System, Hydrol. Earth Syst. Sci., 16, 4079-4099, doi:10.5194/
hess-16-1-2012.




<<
  /ASCII85EncodePages false
  /AllowTransparency false
  /AutoPositionEPSFiles true
  /AutoRotatePages /All
  /Binding /Left
  /CalGrayProfile (None)
  /CalRGBProfile (ECI-RGB.icc)
  /CalCMYKProfile (Photoshop 5 Default CMYK)
  /sRGBProfile (sRGB IEC61966-2.1)
  /CannotEmbedFontPolicy /Warning
  /CompatibilityLevel 1.6
  /CompressObjects /Off
  /CompressPages true
  /ConvertImagesToIndexed true
  /PassThroughJPEGImages false
  /CreateJobTicket false
  /DefaultRenderingIntent /Default
  /DetectBlends true
  /DetectCurves 0.1000
  /ColorConversionStrategy /sRGB
  /DoThumbnails false
  /EmbedAllFonts true
  /EmbedOpenType false
  /ParseICCProfilesInComments true
  /EmbedJobOptions true
  /DSCReportingLevel 0
  /EmitDSCWarnings false
  /EndPage -1
  /ImageMemory 524288
  /LockDistillerParams false
  /MaxSubsetPct 100
  /Optimize true
  /OPM 1
  /ParseDSCComments true
  /ParseDSCCommentsForDocInfo true
  /PreserveCopyPage true
  /PreserveDICMYKValues true
  /PreserveEPSInfo false
  /PreserveFlatness false
  /PreserveHalftoneInfo false
  /PreserveOPIComments false
  /PreserveOverprintSettings true
  /StartPage 1
  /SubsetFonts true
  /TransferFunctionInfo /Preserve
  /UCRandBGInfo /Remove
  /UsePrologue false
  /ColorSettingsFile ()
  /AlwaysEmbed [ true
  ]
  /NeverEmbed [ true
    /Courier
    /Courier-Bold
    /Courier-BoldOblique
    /Courier-Oblique
    /Helvetica
    /Helvetica-Bold
    /Helvetica-BoldOblique
    /Helvetica-Oblique
    /Symbol
    /Times-Bold
    /Times-BoldItalic
    /Times-Italic
    /Times-Roman
    /ZapfDingbats
  ]
  /AntiAliasColorImages false
  /CropColorImages false
  /ColorImageMinResolution 300
  /ColorImageMinResolutionPolicy /OK
  /DownsampleColorImages true
  /ColorImageDownsampleType /Bicubic
  /ColorImageResolution 300
  /ColorImageDepth -1
  /ColorImageMinDownsampleDepth 1
  /ColorImageDownsampleThreshold 1.00000
  /EncodeColorImages true
  /ColorImageFilter /DCTEncode
  /AutoFilterColorImages true
  /ColorImageAutoFilterStrategy /JPEG
  /ColorACSImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /ColorImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /JPEG2000ColorACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /JPEG2000ColorImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /AntiAliasGrayImages false
  /CropGrayImages false
  /GrayImageMinResolution 300
  /GrayImageMinResolutionPolicy /OK
  /DownsampleGrayImages true
  /GrayImageDownsampleType /Bicubic
  /GrayImageResolution 300
  /GrayImageDepth -1
  /GrayImageMinDownsampleDepth 2
  /GrayImageDownsampleThreshold 1.00000
  /EncodeGrayImages true
  /GrayImageFilter /DCTEncode
  /AutoFilterGrayImages true
  /GrayImageAutoFilterStrategy /JPEG
  /GrayACSImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /GrayImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /JPEG2000GrayACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /JPEG2000GrayImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /AntiAliasMonoImages false
  /CropMonoImages false
  /MonoImageMinResolution 1200
  /MonoImageMinResolutionPolicy /OK
  /DownsampleMonoImages true
  /MonoImageDownsampleType /Bicubic
  /MonoImageResolution 400
  /MonoImageDepth -1
  /MonoImageDownsampleThreshold 1.00000
  /EncodeMonoImages true
  /MonoImageFilter /CCITTFaxEncode
  /MonoImageDict <<
    /K -1
  >>
  /AllowPSXObjects true
  /CheckCompliance [
    /None
  ]
  /PDFX1aCheck false
  /PDFX3Check false
  /PDFXCompliantPDFOnly false
  /PDFXNoTrimBoxError true
  /PDFXTrimBoxToMediaBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXSetBleedBoxToMediaBox true
  /PDFXBleedBoxToTrimBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXOutputIntentProfile ()
  /PDFXOutputConditionIdentifier ()
  /PDFXOutputCondition ()
  /PDFXRegistryName ()
  /PDFXTrapped /False

  /CreateJDFFile false
  /Description <<
    /ENU ()
  >>
  /Namespace [
    (Adobe)
    (Common)
    (1.0)
  ]
  /OtherNamespaces [
    <<
      /AsReaderSpreads false
      /CropImagesToFrames true
      /ErrorControl /WarnAndContinue
      /FlattenerIgnoreSpreadOverrides false
      /IncludeGuidesGrids false
      /IncludeNonPrinting false
      /IncludeSlug false
      /Namespace [
        (Adobe)
        (InDesign)
        (4.0)
      ]
      /OmitPlacedBitmaps false
      /OmitPlacedEPS false
      /OmitPlacedPDF false
      /SimulateOverprint /Legacy
    >>
    <<
      /AllowImageBreaks true
      /AllowTableBreaks true
      /ExpandPage false
      /HonorBaseURL true
      /HonorRolloverEffect false
      /IgnoreHTMLPageBreaks false
      /IncludeHeaderFooter false
      /MarginOffset [
        0
        0
        0
        0
      ]
      /MetadataAuthor ()
      /MetadataKeywords ()
      /MetadataSubject ()
      /MetadataTitle ()
      /MetricPageSize [
        0
        0
      ]
      /MetricUnit /inch
      /MobileCompatible 0
      /Namespace [
        (Adobe)
        (GoLive)
        (8.0)
      ]
      /OpenZoomToHTMLFontSize false
      /PageOrientation /Portrait
      /RemoveBackground false
      /ShrinkContent true
      /TreatColorsAs /MainMonitorColors
      /UseEmbeddedProfiles false
      /UseHTMLTitleAsMetadata true
    >>
    <<
      /AddBleedMarks false
      /AddColorBars false
      /AddCropMarks false
      /AddPageInfo false
      /AddRegMarks false
      /BleedOffset [
        0
        0
        0
        0
      ]
      /ConvertColors /ConvertToRGB
      /DestinationProfileName (sRGB IEC61966-2.1)
      /DestinationProfileSelector /UseName
      /Downsample16BitImages true
      /FlattenerPreset <<
        /PresetSelector /MediumResolution
      >>
      /FormElements true
      /GenerateStructure false
      /IncludeBookmarks false
      /IncludeHyperlinks false
      /IncludeInteractive false
      /IncludeLayers false
      /IncludeProfiles true
      /MarksOffset 6
      /MarksWeight 0.250000
      /MultimediaHandling /UseObjectSettings
      /Namespace [
        (Adobe)
        (CreativeSuite)
        (2.0)
      ]
      /PDFXOutputIntentProfileSelector /DocumentCMYK
      /PageMarksFile /RomanDefault
      /PreserveEditing true
      /UntaggedCMYKHandling /UseDocumentProfile
      /UntaggedRGBHandling /UseDocumentProfile
      /UseDocumentBleed false
    >>
  ]
>> setdistillerparams
<<
  /HWResolution [600 600]
  /PageSize [612.000 792.000]
>> setpagedevice


