1,338 research outputs found

    Reduction in Phencyclidine Induced Sensorimotor Gating Deficits in the Rat Following Increased System Xc − Activity in the Medial Prefrontal Cortex

    Get PDF
    Rationale: Aspects of schizophrenia, including deficits in sensorimotor gating, have been linked to glutamate dysfunction and/or oxidative stress in the prefrontal cortex. System xc −, a cystine–glutamate antiporter, is a poorly understood mechanism that contributes to both cellular antioxidant capacity and glutamate homeostasis. Objectives: Our goal was to determine whether increased system xc − activity within the prefrontal cortex would normalize a rodent measure of sensorimotor gating. Methods: In situ hybridization was used to map messenger RNA (mRNA) expression of xCT, the active subunit of system xc −, in the prefrontal cortex. Prepulse inhibition was used to measure sensorimotor gating; deficits in prepulse inhibition were produced using phencyclidine (0.3–3 mg/kg, sc). N-Acetylcysteine (10–100 μM) and the system xc − inhibitor (S)-4-carboxyphenylglycine (CPG, 0.5 μM) were used to increase and decrease system xc − activity, respectively. The uptake of 14C-cystine into tissue punches obtained from the prefrontal cortex was used to assay system xc − activity. Results: The expression of xCT mRNA in the prefrontal cortex was most prominent in a lateral band spanning primarily the prelimbic cortex. Although phencyclidine did not alter the uptake of 14C-cystine in prefrontal cortical tissue punches, intraprefrontal cortical infusion of N-acetylcysteine (10–100 μM) significantly reduced phencyclidine- (1.5 mg/kg, sc) induced deficits in prepulse inhibition. N-Acetylcysteine was without effect when coinfused with CPG (0.5 μM), indicating an involvement of system xc −. Conclusions: These results indicate that phencyclidine disrupts sensorimotor gating through system xc − independent mechanisms, but that increasing cystine–glutamate exchange in the prefrontal cortex is sufficient to reduce behavioral deficits produced by phencyclidine

    Critical research gaps and translational priorities for the successful prevention and treatment of breast cancer

    Get PDF
    INTRODUCTION Breast cancer remains a significant scientific, clinical and societal challenge. This gap analysis has reviewed and critically assessed enduring issues and new challenges emerging from recent research, and proposes strategies for translating solutions into practice. METHODS More than 100 internationally recognised specialist breast cancer scientists, clinicians and healthcare professionals collaborated to address nine thematic areas: genetics, epigenetics and epidemiology; molecular pathology and cell biology; hormonal influences and endocrine therapy; imaging, detection and screening; current/novel therapies and biomarkers; drug resistance; metastasis, angiogenesis, circulating tumour cells, cancer 'stem' cells; risk and prevention; living with and managing breast cancer and its treatment. The groups developed summary papers through an iterative process which, following further appraisal from experts and patients, were melded into this summary account. RESULTS The 10 major gaps identified were: (1) understanding the functions and contextual interactions of genetic and epigenetic changes in normal breast development and during malignant transformation; (2) how to implement sustainable lifestyle changes (diet, exercise and weight) and chemopreventive strategies; (3) the need for tailored screening approaches including clinically actionable tests; (4) enhancing knowledge of molecular drivers behind breast cancer subtypes, progression and metastasis; (5) understanding the molecular mechanisms of tumour heterogeneity, dormancy, de novo or acquired resistance and how to target key nodes in these dynamic processes; (6) developing validated markers for chemosensitivity and radiosensitivity; (7) understanding the optimal duration, sequencing and rational combinations of treatment for improved personalised therapy; (8) validating multimodality imaging biomarkers for minimally invasive diagnosis and monitoring of responses in primary and metastatic disease; (9) developing interventions and support to improve the survivorship experience; (10) a continuing need for clinical material for translational research derived from normal breast, blood, primary, relapsed, metastatic and drug-resistant cancers with expert bioinformatics support to maximise its utility. The proposed infrastructural enablers include enhanced resources to support clinically relevant in vitro and in vivo tumour models; improved access to appropriate, fully annotated clinical samples; extended biomarker discovery, validation and standardisation; and facilitated cross-discipline working. CONCLUSIONS With resources to conduct further high-quality targeted research focusing on the gaps identified, increased knowledge translating into improved clinical care should be achievable within five years

    Performance of Genotype Imputation for Rare Variants Identified in Exons and Flanking Regions of Genes

    Get PDF
    Genotype imputation has the potential to assess human genetic variation at a lower cost than assaying the variants using laboratory techniques. The performance of imputation for rare variants has not been comprehensively studied. We utilized 8865 human samples with high depth resequencing data for the exons and flanking regions of 202 genes and Genome-Wide Association Study (GWAS) data to characterize the performance of genotype imputation for rare variants. We evaluated reference sets ranging from 100 to 3713 subjects for imputing into samples typed for the Affymetrix (500K and 6.0) and Illumina 550K GWAS panels. The proportion of variants that could be well imputed (true r2>0.7) with a reference panel of 3713 individuals was: 31% (Illumina 550K) or 25% (Affymetrix 500K) with MAF (Minor Allele Frequency) less than or equal 0.001, 48% or 35% with 0.001<MAF< = 0.005, 54% or 38% with 0.005<MAF< = 0.01, 78% or 57% with 0.01<MAF< = 0.05, and 97% or 86% with MAF>0.05. The performance for common SNPs (MAF>0.05) within exons and flanking regions is comparable to imputation of more uniformly distributed SNPs. The performance for rare SNPs (0.01<MAF< = 0.05) was much more dependent on the GWAS panel and the number of reference samples. These results suggest routine use of genotype imputation for extending the assessment of common variants identified in humans via targeted exon resequencing into additional samples with GWAS data, but imputation of very rare variants (MAF< = 0.005) will require reference panels with thousands of subjects

    Surgical treatment of tricuspid regurgitation after mitral valve surgery: a retrospective study in China

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Functional tricuspid regurgitation (TR) occurs in patients with rheumatic mitral valve disease even after mitral valve surgery. The aim of this study was to analyze surgical results of TR after previous successful mitral valve surgery.</p> <p>Methods</p> <p>From September 1996 to September 2008, 45 patients with TR after previous mitral valve replacement underwent second operation for TR. In those, 43 patients (95.6%) had right heart failure symptoms (edema of lower extremities, ascites, hepatic congestion, etc.) and 40 patients (88.9%) had atrial fibrillation. Twenty-six patients (57.8%) were in New York Heart Association (NYHA) functional class III, and 19 (42.2%) in class IV. Previous operations included: 41 for mechanical mitral valve replacement (91.1%), 4 for bioprosthetic mitral valve replacement (8.9%), and 7 for tricuspid annuloplasty (15.6%).</p> <p>Results</p> <p>The tricuspid valves were repaired with Kay's (7 cases, 15.6%) or De Vega technique (4 cases, 8.9%). Tricuspid valve replacement was performed in 34 cases (75.6%). One patient (2.2%) died. Postoperative low cardiac output (LCO) occurred in 5 patients and treated successfully. Postoperative echocardiography showed obvious reduction of right atrium and ventricle. The anterioposterior diameter of the right ventricle decreased to 25.5 ± 7.1 mm from 33.7 ± 6.2 mm preoperatively (P < 0. 05).</p> <p>Conclusion</p> <p>TR after mitral valve replacement in rheumatic heart disease is a serious clinical problem. If it occurs or progresses late after mitral valve surgery, tricuspid valve annuloplasty or replacement may be performed with satisfactory results. Due to the serious consequence of untreated TR, aggressive treatment of existing TR during mitral valve surgery is recommended.</p

    The modulation effect of longitudinal acupuncture on resting state functional connectivity in knee osteoarthritis patients

    Get PDF
    Recent advances in brain imaging have contributed to our understanding of the neural activity associated with acupuncture treatment. In this study, we investigated functional connectivity across longitudinal acupuncture treatments in older patients with knee osteoarthritis (OA). Over a period of 4 weeks (six treatments), we collected resting state functional magnetic resonance imaging (fMRI) scans from 30 patients before and after their first, third and sixth treatments. Clinical outcome showed a significantly greater pain subscore on the Knee Injury and Osteoarthritis Outcome Score (KOOS) (indicative of improvement) with verum acupuncture than with sham acupuncture. Independent component analysis (ICA) of the resting state fMRI data showed that the right frontoparietal network (rFPN) and the executive control network (ECN) showed enhanced functional connectivity (FC) with the rostral anterior cingulate cortex/medial prefrontal cortex, a key region in the descending pain modulatory system, in the verum groups as compared to the sham group after treatments. We also found that the rFPN connectivity with the left insula is (1) significantly associated with changes in KOOS pain score after treatments, and (2) significantly enhanced after verum acupuncture treatments as compared to sham treatment. Analysis of the acupuncture needle stimulation scan showed that compared with sham treatment, verum acupuncture activated the left operculum/insula, which also overlaps with findings observed in resting state analysis. Our results suggest that acupuncture may achieve its therapeutic effect on knee OA pain by modulating functional connectivity between the rFPN, ECN and the descending pain modulatory pathway. Clinical trial number: NCT0107939

    Porphyromonas gingivalis suppresses adaptive immunity in periodontitis, atherosclerosis and Alzheimer’s disease

    Get PDF
    Porphyromonas gingivalis, a keystone pathogen in chronic periodontitis, has been found to associate with remote body organ inflammatory pathologies including atherosclerosis and Alzheimer’s disease (AD). Although P. gingivalis has a plethora of virulence factors, much of its pathogenicity is surprisingly related to the overall immunosuppression of the host. This review focuses on P. gingivalis aiding suppression of the host’s adaptive immune system involving manipulation of cellular immunological responses specifically T- and B-cells in periodontitis and related conditions. In periodontitis this bacterium inhibits the synthesis of IL-2 and increases humoral responses. This reduces inflammatory responses related to T- and B-cell activation, and subsequent IFN-ɤ secretion by a subset of T cells. The T cells further suppresses upregulation of programmed cell death-1 (PD-1)-receptor on CD+-cells and its ligand PD-L1 on CD11b+- subset of T-cells. IL-2 down-regulates immune response-regulated genes, induces a cytokine pattern in which the Th17 lineage is favored thereby modulating the Th17/ T-regulatory cell (Treg) imbalance. The suppression of IFN-ɤ stimulated release of interferon-inducible protein-10 (IP-10) chemokine ligands [ITAC (CXCL11) and Mig (CXCL9)] by P. gingivalis capsular serotypes, triggers distinct T-cell responses, and contributes to local immune evasion by release of its outer membrane vesicles. In atherosclerosis P. gingivalis reduces Tregs and transforming growth factor beta-1 (TGF-1) and causes imbalance in the Th17 lineage of the Treg population. In Alzheimer’s disease P. gingivalis may affect the blood-brain barrier permeability, and inhibit local IFN-ɤ response by preventing entry of immune cells into the brain. The scarcity of adaptive immune cells in Alzheimer’s disease neuropathology implies P. gingivalis infection of the brain likely causes impaired clearance of insoluble amyloid and induces immunosuppression. By the effective manipulation of the armory of adaptive immune suppression through a plethora of virulence factors P. gingivalis may act as a keystone organism in periodontitis and in related systemic diseases and other remote body inflammatory pathologies

    Decreased expression of the mannose 6- phosphate/insulin-like growth factor-II receptor promotes growth of human breast cancer cells

    Get PDF
    BACKGROUND: Loss or mutation of the mannose 6-phosphate/insulin-like growth factor-II receptor (M6P/IGF2R) has been found in breast cancer. However, whether or not decreased levels of functional M6P/IGF2R directly contribute to the process of carcinogenesis needs to be further verified by functional studies. METHODS: In this study, using viral and ribozyme strategies we reduced the expression of M6P/IGF2R in human breast cancer cells and then examined the effect on growth and apoptosis of these cells. RESULTS: Our results showed that infection of MCF-7 cells with the adenovirus carrying a ribozyme targeted against the M6P/IGF2R mRNA dramatically reduced the level of transcripts and the functional activity of M6P/IGF2R in these cells. Accordingly, cells treated with the ribozyme exhibited a higher growth rate and a lower apoptotic index than control cells (infected with a control vector). Furthermore, decreased expression of M6P/IGF2R enhanced IGF-II-induced proliferation and reduced cell susceptibility to TNF-induced apoptosis. CONCLUSIONS: These results suggest that M6P/IGF2R functions as a growth suppressor and its loss or mutation may contribute to development and progression of cancer. This study also demonstrates that adenoviral delivery of the ribozyme provides a useful tool for investigating the role of M6P/IGF2R in regulation of cell growth

    APF, HB-EGF, and EGF biomarkers in patients with ulcerative vs. non-ulcerative interstitial cystitis

    Get PDF
    BACKGROUND: Interstitial cystitis (IC) is a chronic bladder disorder, with symptoms including pelvic and or perineal pain, urinary frequency, and urgency. The etiology of IC is unknown, but sensitive and specific biomarkers have been described, including antiproliferative factor (APF), heparin-binding epidermal growth factor-like growth factor (HB-EGF), and epidermal growth factor (EGF). However, the relative sensitivity of these biomarkers in ulcerative vs. nonulcerative IC is unknown, and these markers have yet to be validated in another laboratory. We therefore measured these markers in urine from patients with or without Hunner's ulcer, as well as normal controls, patients with bladder cancer, and patients with bacterial cystitis, at the First Hospital of China Medical University. METHODS: Urine specimens were collected from two groups of Chinese IC patients (38 IC patients with Hunner's ulcers, 26 IC patients without Hunner's ulcers), 30 normal controls, 10 bacterial cystitis patients and 10 bladder cancer patients. APF activity was determined by measuring (3)H-thymidine incorporation in vitro, and HB-EGF and EGF levels were determined by ELISA. RESULTS: APF activity (inhibition of thymidine incorporation) was significantly greater in all IC patient urine specimens than in normal control specimens or in specimens from patients with bacterial cystitis or bladder cancer (p < 0.0001 for each comparison). Urine HB-EGF levels were also significantly lower and EGF levels significantly higher in both groups of IC patients than in the three control groups (p < 0.0001 for each comparison). Although APF and HB-EGF levels were similar in ulcerative and nonulcerative IC patients, EGF levels were significantly higher in IC patients with vs. without ulcers (p < 0.004). CONCLUSION: These findings indicate that APF, HB-EGF and EGF are good biomarkers for both ulcerative and nonulcerative IC and validate their measurement as biomarkers for IC in Chinese patients

    Use of Confocal Laser as Light Source Reveals Stomata-Autonomous Function

    Get PDF
    In most terrestrial plants, stomata open during the day to maximize the update of CO(2) for photosynthesis, but they close at night to minimize water loss. Blue light, among several environmental factors, controls this process. Stomata response to diverse stimuli seems to be dictated by the behaviour of neighbour stomata creating leaf areas of coordinated response. Here individual stomata of Arabidopsis leaves were illuminated with a short blue-light pulse by focusing a confocal argon laser. Beautifully, the illuminated stomata open their pores, whereas their dark-adapted neighbours unexpectedly experience no change. This induction of individual stomata opening by low fluence rates of blue light was disrupted in the phototropin1 phototropin2 (phot1 phot2) double mutant, which exhibits insensitivity of stomatal movements in blue-illuminated epidermal strips. The irradiation of all epidermal cells making direct contact with a given stoma in both wild type and phot1 phot2 plants does not trigger its movement. These results unravel the stoma autonomous function in the blue light response and illuminate the implication of PHOT1 and/or PHOT2 in such response. The micro spatial heterogeneity that solar blue light suffers in partially shaded leaves under natural conditions highlights the physiological significance of the autonomous stomatal behaviour

    Tyrosine Phosphorylation of the E3 Ubiquitin Ligase TRIM21 Positively Regulates Interaction with IRF3 and Hence TRIM21 Activity

    Get PDF
    Patients suffering from Systemic Lupus Erythematous (SLE) have elevated type I interferon (IFN) levels which correlate with disease activity and severity. TRIM21, an autoantigen associated with SLE, has been identified as an ubiquitin E3 ligase that targets the transcription factor IRF3 in order to turn off and limit type I IFN production following detection of viral and bacterial infection by Toll Like Receptors (TLRs). However, how the activity of TRIM21 is regulated downstream of TLRs is unknown. In this study we demonstrate that TRIM21 is tyrosine phosphorylated following TLR3 and TLR4 stimulation, suggesting that its activity is potentially regulated by tyrosine phosphorylation. Using Netphos, we have identified three key tyrosines that are strongly predicted to be phosphorylated, two of which are conserved between the human and murine forms of TRIM21, at residues 343, 388, and 393, all of which have been mutated from tyrosine to phenylalanine (Y343F, Y388F, and Y393F). We have observed that tyrosine phosphorylation of TRIM21 only occurs in the substrate binding PRY/SPRY domain, and that Y393, and to a lesser extent, Y388 are required for TRIM21 to function as a negative regulator of IFN-β promoter activity. Further studies revealed that mutating Y393 to phenylalanine inhibits the ability of TRIM21 to interact with its substrate, IRF3, thus providing a molecular explanation for the lack of activity of Y393 on the IFN-β promoter. Our data demonstrates a novel role for tyrosine phosphorylation in regulating the activity of TRIM21 downstream of TLR3 and TLR4. Given the pathogenic role of TRIM21 in systemic autoimmunity, these findings have important implications for the development of novel therapeutics
    corecore