45 research outputs found

    The JCMT Legacy Survey of the Gould Belt: Mapping 13CO and C 18O in Orion A

    Get PDF
    The Gould Belt Legacy Survey will map star-forming regions within 500 pc, using Heterodyne Array Receiver Programme (HARP), Submillimetre Common-User Bolometer Array 2 (SCUBA-2) and Polarimeter 2 (POL-2) on the James Clerk Maxwell Telescope (JCMT). This paper describes HARP observations of the J= 3 → 2 transitions of 13CO and C18O towards Orion A. The 15 arcsec resolution observations cover 5 pc of the Orion filament, including OMC 1 (including BN–KL and Orion bar), OMC 2/3 and OMC 4, and allow a comparative study of the molecular gas properties throughout the star-forming cloud. The filament shows a velocity gradient of ∼1 km s−1 pc−1 between OMC 1, 2 and 3, and high-velocity emission is detected in both isotopologues. The Orion Nebula and Bar have the largest masses and linewidths, and dominate the mass and energetics of the high-velocity material. Compact, spatially resolved emission from CH3CN, 13CH3OH, SO, HCOOCH3, CH3CHO and CH3OCHO is detected towards the Orion Hot Core. The cloud is warm, with a median excitation temperature of ∼24 K; the Orion Bar has the highest excitation temperature gas, at >80 K. The C18O excitation temperature correlates well with the dust temperature (to within 40 per cent). The C18O emission is optically thin, and the 13CO emission is marginally optically thick; despite its high mass, OMC 1 shows the lowest opacities. A virial analysis indicates that Orion A is too massive for thermal or turbulent support, but is consistent with a model of a filamentary cloud that is threaded by helical magnetic fields. The variation of physical conditions across the cloud is reflected in the physical characteristics of the dust cores. We find similar core properties between starless and protostellar cores, but variations in core properties with position in the filament. The OMC 1 cores have the highest velocity dispersions and masses, followed by OMC 2/3 and OMC 4. The differing fragmentation of these cores may explain why OMC 1 has formed clusters of high-mass stars, whereas OMC 4 produces fewer, predominantly low-mass stars

    Do you get what you pay for? Sales incentives and implications for motivation and changes in turnover intention and work effort

    Get PDF
    This study investigated relations between pay-for-performance incentives designed to vary in instrumentality (annual pay-for-performance, quarterly pay-for-performance, and base pay level) and employee outcomes (self-reported work effort and turnover intention) in a longitudinal study spanning more than 2 years. After controlling for perceived instrumentality, merit pay increase, and the initial values of the dependent variables, the amount of base pay was positively related to work effort and negatively related to turnover intention, where both relationships were mediated by autonomous motivation. The amounts of quarterly and annual pay-for-performance were both positively related to controlled motivation, but were differently related to the dependent variables due to different relations with autonomous motivation

    Developing and testing an instrument for identifying performance incentives in the Greek health care sector

    Get PDF
    BACKGROUND: In the era of cost containment, managers are constantly pursuing increased organizational performance and productivity by aiming at the obvious target, i.e. the workforce. The health care sector, in which production processes are more complicated compared to other industries, is not an exception. In light of recent legislation in Greece in which efficiency improvement and achievement of specific performance targets are identified as undisputable health system goals, the purpose of this study was to develop a reliable and valid instrument for investigating the attitudes of Greek physicians, nurses and administrative personnel towards job-related aspects, and the extent to which these motivate them to improve performance and increase productivity. METHODS: A methodological exploratory design was employed in three phases: a) content development and assessment, which resulted in a 28-item instrument, b) pilot testing (N = 74) and c) field testing (N = 353). Internal consistency reliability was tested via Cronbach's alpha coefficient and factor analysis was used to identify the underlying constructs. Tests of scaling assumptions, according to the Multitrait-Multimethod Matrix, were used to confirm the hypothesized component structure. RESULTS: Four components, referring to intrinsic individual needs and external job-related aspects, were revealed and explain 59.61% of the variability. They were subsequently labeled: job attributes, remuneration, co-workers and achievement. Nine items not meeting item-scale criteria were removed, resulting in a 19-item instrument. Scale reliability ranged from 0.782 to 0.901 and internal item consistency and discriminant validity criteria were satisfied. CONCLUSION: Overall, the instrument appears to be a promising tool for hospital administrations in their attempt to identify job-related factors, which motivate their employees. The psychometric properties were good and warrant administration to a larger sample of employees in the Greek healthcare system

    Relativistic Binaries in Globular Clusters

    Get PDF
    Galactic globular clusters are old, dense star systems typically containing 10\super{4}--10\super{7} stars. As an old population of stars, globular clusters contain many collapsed and degenerate objects. As a dense population of stars, globular clusters are the scene of many interesting close dynamical interactions between stars. These dynamical interactions can alter the evolution of individual stars and can produce tight binary systems containing one or two compact objects. In this review, we discuss theoretical models of globular cluster evolution and binary evolution, techniques for simulating this evolution that leads to relativistic binaries, and current and possible future observational evidence for this population. Our discussion of globular cluster evolution will focus on the processes that boost the production of hard binary systems and the subsequent interaction of these binaries that can alter the properties of both bodies and can lead to exotic objects. Direct {\it N}-body integrations and Fokker--Planck simulations of the evolution of globular clusters that incorporate tidal interactions and lead to predictions of relativistic binary populations are also discussed. We discuss the current observational evidence for cataclysmic variables, millisecond pulsars, and low-mass X-ray binaries as well as possible future detection of relativistic binaries with gravitational radiation.Comment: 88 pages, 13 figures. Submitted update of Living Reviews articl

    Variations in adolescents’ motivational characteristics across gender and physical activity patterns: A latent class analysis approach

    Full text link
    Abstract Background Neglecting to take account of the underlying context or type of physical activity (PA) that underpins overall involvement has resulted in a limited understanding of adolescents’ PA participation. The purpose of the present research was to identify male and female adolescents’ leisure time PA patterns and examine whether psychological processes derived from self-determination theory differ as a function of the pattern of PA undertaken. Methods Nine hundred ninety-five students (61.2% females, 38.8% males; M age = 13.72 years, SD = 1.25) from eight secondary schools in Dublin, Ireland completed a physical activity recall 7 day diary and measures of intrinsic motivation, competence, relatedness, autonomy and autonomy support. Based on the diary five binary indicators of physical activity were derived reflecting recommended levels of MVPA on a minimum of 3 days, at least three sessions of non-organized physical activity (e.g. jog), team sport, individual sport, and organized non-sport physical activity (e.g. dance). Latent class analysis was used to identify subgroups of adolescents that engaged in similar patterns of physical activity. Profiles of physical activity participation were subsequently compared on motivational characteristics using Kruskal-Wallis tests. Results Latent class analysis revealed six distinct classes for girls (Organized Run/Swim & Dance/Gym; Organized Dance; Leisure Active Team Sport; Active Individual Sport; Walk/Run/Outdoor games; Non-Participation) and five for boys (Leisure Active Gym; Leisure Active Individual Sport; Active Team Sport; Active Mixed Type; Non-Participation). Significant differences were found between the classes. Girls characterized by participation in team or individual sport, and boys represented by team sport participation demonstrated significantly higher self-determined motivational characteristics relative to other profiles of physical activity. Conclusion This research offers a nuanced insight into the underlying type of activities that constitute overall patterns of PA among adolescent boys and girls and further reveals that psychological processes vary dependent on the profile of physical activity undertaken. The findings may be useful for informing interventions aimed at promoting physical activity among young people

    The JCMT BISTRO Survey: Magnetic Fields Associated with a Network of Filaments in NGC 1333

    Get PDF
    We present new observations of the active star formation region NGC 1333 in the Perseus molecular cloud complex from the James Clerk Maxwell Telescope B-Fields In Star-forming Region Observations (BISTRO) survey with the POL-2 instrument. The BISTRO data cover the entire NGC 1333 complex (~1.5 pc × 2 pc) at 0.02 pc resolution and spatially resolve the polarized emission from individual filamentary structures for the first time. The inferred magnetic field structure is complex as a whole, with each individual filament aligned at different position angles relative to the local field orientation. We combine the BISTRO data with low- and high- resolution data derived from Planck and interferometers to study the multiscale magnetic field structure in this region. The magnetic field morphology drastically changes below a scale of ~1 pc and remains continuous from the scales of filaments (~0.1 pc) to that of protostellar envelopes (~0.005 pc or ~1000 au). Finally, we construct simple models in which we assume that the magnetic field is always perpendicular to the long axis of the filaments. We demonstrate that the observed variation of the relative orientation between the filament axes and the magnetic field angles are well reproduced by this model, taking into account the projection effects of the magnetic field and filaments relative to the plane of the sky. These projection effects may explain the apparent complexity of the magnetic field structure observed at the resolution of BISTRO data toward the filament network

    JCMT BISTRO Observations: Magnetic Field Morphology of Bubbles Associated with NGC 6334

    Get PDF
    We study the Hii regions associated with the NGC 6334 molecular cloud observed in the submillimeter and taken as part of the B-fields In STar-forming Region Observations Survey. In particular, we investigate the polarization patterns and magnetic field morphologies associated with these Hii regions. Through polarization pattern and pressure calculation analyses, several of these bubbles indicate that the gas and magnetic field lines have been pushed away from the bubble, toward an almost tangential (to the bubble) magnetic field morphology. In the densest part of NGC 6334, where the magnetic field morphology is similar to an hourglass, the polarization observations do not exhibit observable impact from Hii regions. We detect two nested radial polarization patterns in a bubble to the south of NGC 6334 that correspond to the previously observed bipolar structure in this bubble. Finally, using the results of this study, we present steps (incorporating computer vision; circular Hough transform) that can be used in future studies to identify bubbles that have physically impacted magnetic field lines

    Iron Behaving Badly: Inappropriate Iron Chelation as a Major Contributor to the Aetiology of Vascular and Other Progressive Inflammatory and Degenerative Diseases

    Get PDF
    The production of peroxide and superoxide is an inevitable consequence of aerobic metabolism, and while these particular "reactive oxygen species" (ROSs) can exhibit a number of biological effects, they are not of themselves excessively reactive and thus they are not especially damaging at physiological concentrations. However, their reactions with poorly liganded iron species can lead to the catalytic production of the very reactive and dangerous hydroxyl radical, which is exceptionally damaging, and a major cause of chronic inflammation. We review the considerable and wide-ranging evidence for the involvement of this combination of (su)peroxide and poorly liganded iron in a large number of physiological and indeed pathological processes and inflammatory disorders, especially those involving the progressive degradation of cellular and organismal performance. These diseases share a great many similarities and thus might be considered to have a common cause (i.e. iron-catalysed free radical and especially hydroxyl radical generation). The studies reviewed include those focused on a series of cardiovascular, metabolic and neurological diseases, where iron can be found at the sites of plaques and lesions, as well as studies showing the significance of iron to aging and longevity. The effective chelation of iron by natural or synthetic ligands is thus of major physiological (and potentially therapeutic) importance. As systems properties, we need to recognise that physiological observables have multiple molecular causes, and studying them in isolation leads to inconsistent patterns of apparent causality when it is the simultaneous combination of multiple factors that is responsible. This explains, for instance, the decidedly mixed effects of antioxidants that have been observed, etc...Comment: 159 pages, including 9 Figs and 2184 reference

    Can empathy lead to emotional exhaustion in teachers? The mediating role of emotional labor

    Get PDF
    Objectives: The present study was designed to examine the links between empathy, emotional labor (both surface and deep acting), and emotional exhaustion as well as determine if emotional labor mediates the relationship between empathy and emotional exhaustion in teachers. It was assumed that emotional labor can take two opposite directions (positive mood induction and negative mood induction). Thus, the additional aim of the study was to analyze the mediating role of mood regulation strategies in the relationship between empathy and emotional exhaustion. Materials and Methods: A sample of 168 teachers from Łódź and its surroundings completed a set of questionnaires: Emotional Labor Scale; Mood Regulation Scales, Maslach Burnout Inventory, and Empathic Sensitivity Scale. Results: The results provided mixed support for the hypotheses indicating that both types of emotional labor, negative mood induction and emotional exhaustion were positively intercorrelated. Moreover, deep acting was a significant mediator in the relationship between empathy and emotional exhaustion. The analyzed link was also mediated by negative mood induction, whereas positive mood induction did not emerge as a significant mediator. Conclusions: The study provided insight into the role of empathy and emotional labor in the development of teacher burnout. It also confirmed that deep acting and negative mood induction mediate the relationship between empathy and emotional exhaustion in teachers
    corecore