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ABSTRACT

Fluctuating properties of the atmosphere, and in particular its water vapour content, give rise to phase fluctuations of astronomical
signals which, if uncorrected, lead to rapid deterioration of performance of (sub)-mm interferometers on long baselines. The Atacama
Large Millimetre/submillimeter Array (ALMA) uses a 183 GHz water vapour radiometer (WVR) system to help correct these fluctu-
ations and provide much improved performance on long baselines and at high frequencies. Here we describe the design of the overall
ALMA WVR system, the choice of design parameters and the data processing strategy. We also present results of initial tests that
demonstrate both the large improvement in phase stability that can be achieved and the very low contribution to phase noise from the
WVRs. Finally, we describe briefly the main limiting factors to the accuracy of phase correction seen in these initial tests; namely, the
degrading influence of cloud and the residual phase fluctuations that are most likely to be due to variations in the density of the dry
component of the air.
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1. Introduction

The Atacama Large (sub-)Millimetre Array (ALMA) is an
aperture-synthesis telescope that will consist of 66 antennas ob-
serving at millimetre and sub-millimetre wavelengths on base-
lines ranging in length from 9 m to 16 km. The Earth’s tropo-
sphere has a large degrading effect on astronomical observations
at these wavelengths, and to minimise these effects ALMA is
located at a very dry site in northern Chile with an altitude
of 5000 m.

Even at this site, the troposphere will have a significant effect
on most ALMA observations, consisting of two related phenom-
ena (see, for example, Wilson et al. 2009):

1. Absorption of incoming astronomical radiation (and corre-
sponding emission of incoherent thermal radiation).

2. Delay to the incoming astronomical radiation (i.e., non-unit
refractive index) that is variable in time and in position.

The two phenomena are physically related by the requirement of
causality (see, e.g., Toll 1956) as mathematically described by
the Kramers-Krönig relation. They are primarily caused by the
molecules of oxygen, nitrogen and water in the troposphere. The
degradation of the astronomical signals caused by the absorption
is of course irreversible, but this is not the case for the delay. If
(as is the case for ALMA) the individual elements of the in-
terferometer are smaller than the characteristic length-scale over
which delay varies, and the received signal is sampled faster than
the characteristic time-scale over which the delay changes, then
the effects of variable delay can in principle be corrected in the
data processing step (Hinder & Ryle 1971). For this to be pos-
sible, it is however necessary to be able to estimate the delay
variation due to the atmosphere. In the case of ALMA a sys-
tem of water vapour radiometers (WVR) operating at 183 GHz
is used for this purpose.

1.1. Structure of the atmosphere

Nitrogen, oxygen and other “dry” components of the tropo-
sphere are well-mixed with each other and are in near pressure
equilibrium. As a result, the pressure and total column density
of the troposphere generally vary only slowly with time and
position. In contrast, the temperature of the dry air does vary
rapidly in time and position. This is due to a combination of hy-
drostatic temperature variation, localised heating and cooling at
the Earth’s surface and the effect of wind-induced turbulence.
These temperature fluctuations have only a minor effect on the
absorption by dry air but a significant effect on the refractive
index, leading to fluctuations in apparent delay of astronomical
signals. These delay fluctuations are, in turn, the dominant cause
of seeing that impacts astronomical observations at optical and
infrared wavelengths from the Earth’s surface. These “dry” de-
lay fluctuations due to temperature differences of air also have a
measurable effect at millimetre and sub-millimetre wavelengths,
but are generally much smaller than the effects of water vapour.

Due to its large dipole moment, water vapour is a strong
absorber at millimetre and sub-millimetre wavelengths. It also
significantly increases the refractive index of air and there-
fore delays the radiation, with one millimetre of precipitable
water vapour corresponding to an equivalent of approximately
6 millimetres of extra “electrical path”. Unlike the “dry” air com-
ponents, water vapour is generally very poorly mixed with the
other components of air, which means that its concentration (or
partial pressure) varies rapidly in time and position. This in turn
means that the integrated water vapour along the line of sight of
each element of an interferometer, and consequently the appar-
ent delay to each element, are fluctuating in time in a way that is
different for each element.

If we assume that the differences in concentration of water
vapour are driven by fully developed turbulence, then the likely
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difference in concentration of water vapour between two points
in the atmosphere is an increasing function of the distance be-
tween these points up to some “outer length scale”. Carilli &
Holdaway (1999) show evidence that, at the VLA site in New
Mexico, USA, this outer length-scale at which the differences
between two points no longer increase is at least as large as the
maximum baseline length of ALMA. This increase in the differ-
ences in water vapour concentration with baseline length trans-
lates into an increase in the magnitude of path fluctuations on
longer baselines, making measurements of astronomical signals
less efficient and less accurate.

1.2. Impact of phase errors on science data

An aperture synthesis telescope is only sensitive to changes in
the difference of delays between pairs of elements. A fluctuating
difference in the delays leads to a fluctuation in the phase of the
correlated signal (the “visibility”) recorded for that pair.

Such phase fluctuations have a number of effects on the
images of the sky reconstructed from the visibilities (see for ex-
ample Nikolic et al. 2008; Lay 1997) two of which are most
important. Firstly, they cause decorrelation, i.e., a reduction of
the apparent amplitude of visibility recorded, because the sig-
nal is not fully coherent for the duration of observation. The

decorrelation causes a loss of amplitude by a factor exp
(
−
φ2

rms
2

)
where φrms is the root-mean-square (rms) fluctuation of phase.
The magnitude of the noise in the measurements is unaffected
by these phase fluctuations and therefore the decorrelation leads
to a reduction in the sensitivity of the telescope.

Secondly, the errors in the measured visibilities produce spu-
rious features on the maps that are produced. These spurious
features lead to a further reduction in the dynamic range of the
maps. (The term “dynamic range” is the ratio of the highest peak
on the map to the average noise in the parts of the map where
there are no real astronomical sources.) Note that in addition to
the errors in the phases caused directly by the atmospheric fluc-
tuations, errors are also introduced into the measured amplitudes
because the amount of decorrelation of each sample varies due
to the random nature of the fluctuations. Both sorts of error con-
tribute to the spurious features in the map.

The magnitude of the atmospheric fluctuations increases
on longer baselines and, at millimetre and particularly sub-
millimetre wavelengths, a baseline length is reached where the
path variations are a large fraction of a wavelength and no useful
astronomical signal can be reconstructed. This means that, with-
out correction of the phase fluctuations, the angular resolution
of the telescope will be limited by the effects of the atmosphere.
The resolution achievable without correction is extremely vari-
able, but a typical value is, coincidentally, similar to the optical
seeing at good sites, i.e., around 0.5 arcsec (see for example the
analysis of ALMA site-testing data by Evans et al. 2003).

1.3. Strategies for dealing with atmospheric phase
fluctuations

If no phase correction method is available, the only option is
to limit the observing to short baselines and/or to times when
the atmosphere is sufficiently stable. This is effective because on
short enough baselines, the elements of an interferometer look
along similar lines of sight through the atmosphere and therefore
suffer from almost the same total path fluctuations; this means
that the differential path fluctuation, which is what determines
phase fluctuation of the visibility, is small. This strategy however

directly limits the maximum resolution attainable with the inter-
ferometer and reduces the amount of observing time available.

Alternatively, if the surface brightness of the objects being
observed is sufficiently high, it may be possible to use the tech-
nique of self-calibration (e.g., by Pearson & Readhead 1984;
Cornwell & Fomalont 1999). With this technique, the observed
interferometric visibilities are used to solve simultaneously for
the path errors to the antennas and for the reconstructed image of
the sky. For this technique to be effective the signal-to-noise ratio
in the time interval being solved for needs to be high enough to
give phase errors smaller than those caused by the atmosphere.
This technique works well at centimetre wavelengths, especially
for compact non-thermal sources, but at millimetre and sub-mm
wavelengths many objects will not have sufficiently high bright-
ness temperatures to satisfy the signal-to-noise requirement, es-
pecially on the longer baselines. Several factors contribute to
this increasing difficulty as one moves to shorter wavelengths.
These include the nature of the emission, which is generally
thermal, the higher system noise temperatures and the fact that
the timescales of the atmospheric fluctuations that cause signif-
icant decorrelation are shorter. The large instantaneous band-
width available provides some mitigation when the source has
continuum emission, but that does not apply for objects where
the emission is limited to a few spectral lines.

To alleviate the problems of low signal-to-noise ratio on the
science target, phase referencing (also known as fast-switching)
can be implemented. In this scheme a phase calibrator, nearby in
the sky to the science target, is observed frequently and the phase
measurements obtained for each antenna (from self-calibration)
are used to generate an interpolated phase correction table for the
source. This method is presented in Carilli & Holdaway (1999)
and is in routine use at the (J)VLA at 22 GHz and higher fre-
quencies. For centimetre wavelengths, calibration on timescales
of order one minute is effective, but at millimetre and especially
sub-mm wavelengths much shorter calibration times are needed
to prevent significant decorrelation. Finding suitable phase cal-
ibrators that are sufficiently close to the target also becomes in-
creasingly difficult at higher frequencies.

Another option is the paired-antennas method (see Asaki
et al. 1996) where sub-arraying (i.e., independent interferomet-
ric arrays operating side-by-side) is used so that both the tar-
get source and a calibrator source are observed simultaneously.
Provided that the science target and calibrator are close enough
on the sky, phase measurements of the calibrator can be used
to determine the phase correction required above each of the
calibrator-array antennas and these can be transferred, directly
or with interpolation, to nearby antennas in the science-subarray.
This technique has been used successfully at mm wavelengths at
the CARMA telescope (Pérez et al. 2010).

Although they are effective at improving phase noise from
the atmosphere, both fast-switching and the paired-antennas
methods come at a cost in terms of sensitivity, in the former case
because time on source is reduced and in the latter because only
a fraction of the array is available for science observing. In addi-
tion there are, in both cases, limitations on the accuracy that can
be achieved. In fast-switching, the non-continuous measurement
of the calibrator phase means that we are forced to interpolate in
time to estimate the phase corrections to apply to the observa-
tions of the science source, and the lines of sight through the at-
mosphere necessarily differ because the source and calibrator are
not co-located on the sky. In the paired antenna scheme, whilst
there is continuous measurement of calibrator phase, the path
through the atmosphere is different for the science and calibrator
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sources, both because of the different sky positions and because
of the different positions of the antennas on the ground.

1.4. Radiometric phase correction

It was realised early on in the development of interferomet-
ric telescopes operating at cm-wavelengths that water vapour
fluctuations are an important limitation on achievable resolution
(Baars 1967; Hinder & Ryle 1971). By this time the basic tech-
nique of using passive radiometers to do remote-sensing of the
water vapour content of the atmosphere was already developed
(Barrett & Chung 1962) and it was therefore soon proposed that
radiometers could be used to correct for the path delay due to wa-
ter vapour and therefore phase errors in an interferometer (e.g.,
Schaper et al. 1970).

The principle of radiometric phase correction is to make
measurements of the sky brightness as a function of time along
the line of sight of the antennas and use these to infer the delays
to the astronomical signal received at each antenna. Since water
vapour is the largest contributor to the time-variable delays, ra-
diometer systems have most often been designed to observe at
frequencies around strong water-vapour transitions.

Most of the larger mm and sub-mm wave interferometric
telescopes have either implemented or experimented with radio-
metric phase correction techniques in order to improve the co-
herence of the astronomical signal on longer baselines. Systems
based on the 22 GHz water vapour line have been installed or
experimented with at the IRAM Plateau de Bure Interferometer
(PdBI) in the French Alps (Bremer 2002), at the NRAO Very
Large Array in New Mexico and at the Owens Valley Radio
Observatory in California (Woody et al. 2000). Only the sys-
tem at PdBI is in routine operation. 22 GHz radiometers are also
used on some VLBI telescopes, for example at Effelsberg (Roy
et al. 2007).

A broadband continuum radiometric phase correction tech-
nique where the atmospheric emission away from specific tran-
sitions, but which is still mostly due to water vapour, has been
tried at Berkley-Illinois-Maryland Array (Zivanovic et al. 1995),
IRAM PdBI (Bremer et al. 1995) and at the Sub-Millimeter
Array (Battat et al. 2004).

Finally, phase correction using the 183 GHz water vapour
line has been demonstrated at the James Clerk Maxwell
Telescope – Caltech Submillimeter Observatory interferometer
(Wiedner et al. 2001). The ALMA radiometer system is to a
large extent based on that concept.

2. System overview

The ALMA specification, at system level, for correction of phase
fluctuations due to water vapour is given by:

δLcorrected ≤

(
1 +

c
1 mm

)
10 µm + 0.02 × δLraw (1)

where the symbols have following meanings:

δLraw is the uncorrected path fluctuations on a baseline
c is the Precipitable Water Vapour (PWV) column along the line

of sight of an antenna
δLcorrected is the specification for the per-antenna path fluctua-

tions after the correction.

The quantity normally measured is the phase fluctuation on a
baseline, which is allowed to be up to

√
2 larger than the per-

antenna specification. The specification in Eq. (1) applies on
timescales shorter than 180 s; the specification assumes that any
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Fig. 1. Conceptual design of the water vapour radiometers.

residual errors on timescales longer than 180 s will be adequately
corrected by observations of point source phase calibrators near
to the science target.

If these specifications are just met, they imply a 7% ampli-
tude loss due to decorrelation (see discussion in Sect. 1.2) from
residual phase errors if observing at λ = 350 µm in 0.5 mm
PWV; 2.5% loss if observing at λ = 850 µm at 1.1 mm PWV; and
less than 1% loss when observing at λ = 3 mm when the line of
sight PWV is 3 mm. By comparison, the loss due to atmospheric
absorption when observing at λ = 350 µm through 0.5 mm PWV
is about 50%, i.e., much larger than the loss due to decorrelation.
The losses due to decorrelation are however highly variable and
hard to estimate. As a result they affect both the image quality
and the flux calibration accuracy. By contrast, the losses due to
absorption need not have a significant effect on imaging or ac-
curacy, apart from the inevitable loss of sensitivity, so long as
appropriate calibration techniques are applied.

The ALMA phase correction system consists of 183 GHz
WVRs installed on all of the 12 m diameter antennas. The WVRs
measure the observed sky signal, integrate the signal for an
operator-selected time interval and apply an internal calibration,
so that the output values are in units of antenna temperature. The
integration times used are typically around one second, as this
corresponds to characteristic minimum timescale (∼D/u where
D = 12 m is the antenna diameter and u ∼ 10 m s−1 is the
wind speed) over which the observed signal varies. The WVR
measurements are collected by the ALMA correlator subsystem,
recorded to the permanent data store and optionally used for on-
line phase-correction.

3. WVR instrument design

A block diagram of the conceptual design of the radiometers de-
ployed by ALMA is shown in Fig. 1. This is an evolution of
the design originally described by Wiedner et al. (2001) which
was used as a starting point for two ALMA prototype WVRs
designed and built by a collaboration between the University
of Cambridge and Onsala Space Observatory. These prototypes
were in turn used as input for the detailed design and produc-
tion of the final production WVRs by Omnisys Instruments AB,
Sweden. The detailed design of production units is described by
Emrich et al. (2009). In this section we describe the design pa-
rameters of the WVRs and their justification.

3.1. Frequency response

The objectives of the frequency response and filter design of the
WVRs were:

– Maximum sensitivity to water vapour fluctuations over a
range of total water vapour column conditions.
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– Sufficient frequency resolution to avoid using the saturated
part of the line when conditions are wet and to avoid the
wings when conditions are dry.

– Measurement of both the inner part of the water vapour line
and the wings to allow inference of atmospheric properties
such as total water vapour column and also constraints on its
vertical distribution.

– Keep the design as simple as possible and limit the costs.

To maximise the sensitivity, the entire region of the spectrum
around the 183 GHz water vapour line is sampled simultane-
ously using a double-sideband (DSB) mixing system with four
fixed Intermediate Frequency (IF) filters. The alternative ar-
rangement of using a single filter, sideband separation and tun-
able local oscillators (LOs) to scan a single detection band across
the line is used in some commercial atmospheric sounders but
would lead to extra complexity and lower sensitivity (as only a
part of the spectrum is sampled at any one time) while the addi-
tional frequency resolution is not thought to be an advantage in
our application.

During the design and prototyping stages the effects of
clouds were recognised as potential sources of errors in the
WVR phase correction technique. In order to try to reduce this
problem, a sideband-separation design leading to a dual-single-
sideband (2SB) system was considered and implemented in one
of the prototypes. Such a 2SB system can distinguish a sloping
continuum spectrum from one which is symmetric around the
LO frequency and can therefore be used to separate the contri-
bution to the sky brightness from water vapour and from cloud
droplets (which has opacity that approximately varies as ν2). The
extra complexity and cost of sideband separation was however
judged to outweigh the benefits and this option was therefore
descoped for the ALMA production radiometers.

Selection and optimisation of the filters frequencies and
bandwidths is discussed in detail by Hills (2007). The main con-
clusions of this optimisation study are that:

– For optimum sensitivity it is best to divide the entire avail-
able IF bandwidth between the filters.

– Estimates of the continuum (which is dominated by clouds
when they are present) are most constrained by the outermost
channel and therefore this channel should be kept relatively
narrow so that is contains only a small contribution from the
wing of the line.

A model computation of sky brightness around the 183 GHz wa-
ter vapour line is shown in Fig. 2 for a range of total water vapour
columns that is representative of typical conditions at the ALMA
site. It can be seen that the conditions range from optically thin
at the centre of the line to completely optically thick in a range of
around 2 GHz around the centre of the line. This can also be seen
Fig. 3, which shows the rate of change of sky brightness with re-
spect to changes of the total water vapour column over the same
frequency range as Fig. 2. Higher values of this rate of change
mean that for the same magnitude of noise in the WVR receiver
system, a smaller phase noise is achievable in the corrected data.
It can therefore be seen from this plot that the optimum frequen-
cies for measurement of water vapour fluctuations range from
the centre of the line (under very dry conditions) to about to
about 5 GHz away from the centre (for about 5 mm of water). In
order to allow for a channel which measures primarily the con-
tinuum contribution, the IF bandwidth selected was 0.5 GHz to
8.0 GHz divided into four channels. The final design of the fil-
ter centres and bandwidths is illustrated in Fig. 4, together with
a model computation of sky brightness of the 183 GHz water
vapour line.
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Fig. 2. Model brightness of the atmosphere at frequencies around the
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line). The model was computed using the ATM program by Pardo et al.
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six values of total PWV as in Fig. 2.

Since mass-production of WVRs with frequency responses
that are very uniform is difficult, ALMA adopted a manufactur-
ing specification with a 5% tolerance on the centre frequency and
bandwidth of the response of the entire system. To obtain the re-
quired phase-correction performance it is however necessary to
have better knowledge than this of the actual response. This is
illustrated by Fig. 5 which shows a model computation of the
change of the constant of proportionality between sky bright-
ness fluctuations and path fluctuations for a 5% change in the
channel centre frequency. It can be seen in this figure that a mis-
characterisation of the centre frequency of that magnitude can
easily lead to errors of a few to 10 per cent in the phase correc-
tion coefficients, which will typically lead to similar errors in the
derived path correction. Such errors would be significant when
compared to the specification shown in Eq. (1). For this reason
the frequency response of each ALMA WVRs was characterised
by the manufacturer after final assembly to better than 1 percent
accuracy in the centre frequency and bandwidth of each channel.

A104, page 4 of 11

http://dexter.edpsciences.org/applet.php?DOI=10.1051/0004-6361/201220987&pdf_id=2
http://www.mrao.cam.ac.uk/~bn204/alma/atmomodel.html
http://www.mrao.cam.ac.uk/~bn204/alma/atmomodel.html
http://dexter.edpsciences.org/applet.php?DOI=10.1051/0004-6361/201220987&pdf_id=3


B. Nikolic et al.: Phase correction for ALMA with 183 GHz water vapour radiometers

0

50

100

150

200

250

T b
(K

)

175 177.5 180 182.5 185 187.5 190

ν (GHz)
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3.2. Sensitivity requirements

A basic limit on the accuracy of phase correction arises from
the white-spectrum thermal-like noise arising in the mixer and
amplifier of the WVR receivers. The magnitude of the errors in-
troduced by this thermal-like noise depends on the atmospheric
conditions (primarily the total water vapour column), the inte-
gration time used and the way in which the signals for the four
channels of the WVRs are combined. The thermal-like noise
fluctuation in the measured sky brightness is given by:

δTideal = 2Tsys/
√

Bt (2)

where:

Tideal is the fluctuation, labelled “ideal” because it does not
take into account effect the gain fluctuations discussed in
Sect. 3.3;

B is the bandwidth;
t is the total integration time;
Tsys is the system noise temperature (and is of the order of

1000 K for ALMA production systems).

The factor of two in Eq. (2) arises because the radiometers mea-
sure the sky for only about half of the time while the calibration
loads are measured in the other half (this gives a factor of

√
2);

and, because the final measurement is derived approximately
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Fig. 6. Model phase correction coefficients versus the total column of
water vapour. Red to blue lines (following the spectrum) are channels
1 to 4, i.e., innermost to outermost channel. Note that the units of the
ordinate are Kelvin per millimetre of extra path in contrast to Fig. 3
which has units of Kelvin per mm of precipitable water vapour.

from the difference of measurements on the sky and the calibra-
tion loads (giving another factor of

√
2). A lower-noise design

is possible by having two separate receivers arranged so that one
is observing the calibration loads while the other is observing
the sky and vice versa. This was implemented on the prototype
WVRs but was not adopted for the production requirements for
reasons of cost and complexity.

The relationship between a small change in sky brightness
and the consequent change in the electrical path to the antenna
is given by “phase-correction coefficients” which we denote by
dL/dTB. Plots of phase-correction coefficients computed from
models for the four channels of the production WVRs and for a
wide range water vapour columns are shown in Fig. 6. The criti-
cal region of PWV for sensitivity is around 2 mm of PWV where
the line begins to saturate and the effective sensitivity of the cen-
tral channel begins to decrease rapidly. The phase correction co-
efficients at around 2 mm PWV are around 4–6 K mm−1 while
the specification in Eq. (1) calls for a path error of 0.03 mm.
This calculation indicates that if the noise in measuring the sky
brightness can be held to of order 0.1 K, the specification can
be met in this critical region while still using data from only
one channel. A more detailed analysis of this topic is given by
Stirling et al. (2005).

3.3. Gain and absolute calibration

In order to achieve a high effective sensitivity, the WVRs must
be calibrated frequently enough to remove the effect of gain fluc-
tuations. These fluctuations in gain usually have a 1/ f spectrum.
Additionally, WVRs for ALMA need to have a good absolute
calibration, since the total power of sky emission is used in-
fer the water vapour column and other atmospheric parameters.
They also need good stability in time and with respect to small
motions in the antenna.

For a standard Dicke radiometer, an estimate of the effective
noise including the effect of gain fluctuations is:

δTsrc =

√
δT 2

ideal +

[
(Tsrc − Tref)

δG
G

]2

(3)

where:

δTideal is the fluctuation of an “ideal” radiometer as discussed in
Sect. 3.2;
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Tsrc is the effective temperature of the source being measured,
i.e. the sky brightness;

Tref is the effective temperature of reference, i.e. the calibration
load or loads;

G is the gain of the radiometer;
δG is the fluctuation in the gain.

Normally a Dicke-switched radiometer is designed so that Tref
is close to Tsrc and therefore the contribution of gain fluctuations
to the uncertainty of measurement is minimised. This is however
hard to achieve in the case of ALMA’s 183 GHz WVRs because:

1. The sky brightness varies strongly as a function atmospheric
conditions, frequency and airmass, with the range corre-
sponding to brightness temperatures from 25 K to about
260 K. Therefore no single reference load temperature can
be suitable for all observations.

2. It is considerably cheaper and more reliable to have reference
loads near the ambient temperature, whereas the sky bright-
ness is always smaller than these ambient temperatures.

For these reasons the ALMA WVRs operate as unbalanced
Dicke radiometers where the differencing scheme removes some
but not all of the effects of gain fluctuations, and some form of
frequent calibration for gain fluctuation must be used. This is im-
plemented by observing two calibration loads, at different tem-
peratures, Tcold (about 280 K for the ALMA production WVRs)
and Thot (about 360 K).

The gain is estimated as:

Ĝ =
Vhot − Vcold

Thot − Tcold
(4)

where Vcold is the signal when observing the cold load and Vhot
is the signal when observing the hot load. Therefore:

Tsrc =
Vsrc − Vref

Ĝ
+ Tref (5)

Vref =
Vhot + Vcold

2
(6)

Tref =
Thot + Tcold

2
(7)

but Ĝ now includes fluctuations due to measurement error of
Vhot and Vcold. In fact unless (Thot − Tcold) is much greater than
(Tsrc−Tref) then Ĝ must be smoothed. If the gain is not smoothed,
then even without any gain fluctuations the effective noise will
be dominated by the errors in the gain estimate rather than the
gain fluctuations themself. An approximate relationship is:

δTsrc ≈ δTideal

√
1 +

2
tS

(
Tsrc − Tref

Thot − Tcold

)2

(8)

where the factor of two arises because the calibration loads are
each observed for only half of the time that the sky is observed
and tS is the smoothing factor, which is the ratio of the time over
which the gain is smoothed to the integration time used for the
measurement of the sky brightness temperature. For the case of
ALMA WVRs, a smoothing factor of at least 60 is required to
ensure that the errors in the gain estimate are not dominant.

In fact, for unbalanced Dicke-switched radiometers like this,
an alternative gain estimation scheme is possible which makes
use of the facts that:

1. The receiver noise temperature and any additive post-
detection offsets are relatively stable in time.

2. The total signal when observing a calibration load can then
be used to calibrate the gain, i.e.:

Ĝ′ ∼
Vref

Tref + Trec
· (9)

3. Longer time scale changes in the gain and receiver tempera-
ture/offset can be estimated from two-load observations us-
ing ample smoothing.

This has the advantage that, as denominator Tref + Trec is large,
the significance of measurement fluctuations of Vref is small and
no smoothing on gain needs to be employed, enabling correc-
tion of shorter timescale gain fluctuations. This scheme was ex-
plored for the use on the ALMA WVRs but was found not to be
necessary.

The overall absolute calibration of the WVRs is fixed by ob-
serving external ambient and liquid nitrogen calibration loads
during the in-factory characterisation of the units. The absolute
calibration is important as the absolute sky brightness is used to
fit an atmospheric model and to estimate the quantities needed
for translation of WVR fluctuations into path changes.

3.4. Optical design

To ensure accurate phase correction it is important that the ra-
diometer and astronomical beams overlap closely so that the ra-
diometer is measuring the emission from the same water vapour
which is delaying the astronomical radiation. This was achieved
at ALMA by mounting the WVRs in the focal plane of the an-
tennas so that they use the same primary and secondary mir-
ror optics as the astronomical receiver. In fact the WVR beam
corresponds to the bore-sight of the telescope, with the four as-
tronomical beams closest to it being the highest frequency as-
tronomical receivers (Bands 7, 8, 9 and 10) since these are the
ones for which the phase correction is most important. The angu-
lar separation between the WVR beam and astronomical beams
is between 3.5 and 9 arcmin, corresponding to a divergence of
between 1 and 3 m at 1000 m above ground level. At this dis-
tance from the antennas the beams are still of order 12 m across,
so this separation corresponds to about 10%–30% of the beam
width. The quantitative impact of this beam divergence is inves-
tigated by Nikolic et al. (2007). Fixed relative pointing between
astronomical and WVR beams is guaranteed by rigid mounting
of the radiometer on the Front-End Support Structure that also
supports the astronomical receivers.

The sensitivity of the WVRs is high enough that they can be
quite sensitive to spill-over radiation, especially if it depends on
time or the pointing of the antenna. For example, a 0.1 percent
change in the spill-over onto the ground will lead to about a 0.3 K
change in the observed signal, which is more than 3 times higher
than the thermal noise in a one-second integration time. Such
changes in spill-over would be confused with real changes of sky
brightness and therefore be translated into inaccurate corrections
of the phase of the astronomical signal.

The magnitude of the spill-over for ALMA WVRs is min-
imised by under-illuminating the optics. The overall antenna
gain of the WVR system is not important for WVR operation
since, to first order, the system needs only to measure the surface
brightness of sky emission along the boresight of the antenna.
Therefore the WVR system was designed to illuminate the pri-
mary reflector with an edge taper of −16 dB and a maximum
of 2% spill-over past the secondary. The under-illumination, to-
gether with adequate sizes for the relay optics between the WVR
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and the secondary mirror, means that the overall forward effi-
ciency of the system is over 95%. The under-illumination does
mean that the volume of the atmosphere that affects the astro-
nomical signal is a little larger than that measured by the ra-
diometer but this is expected to have only a small effect on the
final results (see Nikolic et al. 2007).

4. Data processing

As described above, the WVR measurements are calibrated in-
ternally in the radiometer and are output as sky brightness in
units of Kelvin. The subsequent data processing uses these mea-
surements to correct the astronomical data for the effects of the
atmosphere. ALMA has two software implementations of this
processing: an on-line system which applies the phase correc-
tion, in the software associated with the correlator, before the
visibilities are stored; and an off-line system which phase-rotates
the visibilities during the standard interferometric data reduc-
tion. The on-line system is part of the overall on-line telescope
calibration system “TelCal” described by Broguière et al. (2011),
while the off-line system is the separate program “wvrgcal” de-
scribed by Nikolic et al. (2012) and which is now incorporated
into the CASA1 distribution. The principles of the two data pro-
cessing implementations are broadly similar but where they are
different the description below is of the off-line system.

At frequencies around 183 GHz the relationship between sky
brightness and water vapour column (and therefore excess path)
is highly non-linear because the water vapour line is close to
saturation even in very dry conditions. This is in contrast to the
situation at 22 GHz, where the line is relatively weak and there-
fore not saturated, but where other effects such as variable spill-
over and cloud can become very important. This non-linearity,
together with the dependence of the water vapour line on tem-
perature and pressure of the atmosphere, means that a multi-
dimensional non-linear model must be fitted to the observed sky
brightness to determine the total excess path.

For ALMA phase-correction we are however primarily in-
terested in the change of the electrical path to the antenna over
small changes of direction on sky and for small periods of time.
For small enough changes, the path can be linearised so that
δL ≈

(
dL

/
dTB,k

)
δTB,k where δTB,k is the fluctuation in the kth ra-

diometer channel and each channel produces an independent es-
timate of the path fluctuation. These independent path estimates
can then be combined to obtain a single best estimate:

δL ≈
∑

k

wk
dL

dTB,k
δTB,k (10)

where wk is the weight assigned to each channel. The sum of the
weights is unity.

The data processing steps consist of:

1. estimating the phase-correction coefficients dL
/
dTB,k ;

2. choosing how to combine the four channels, i.e., choosing a
set of weights wk;

3. optionally filtering the observed fluctuations δTB,k to reduce
the effect of noise in radiometers;

4. applying the phase correction to the observed visibilities.

In the present implementation of phase correction software,
the coefficients dL

/
dTB,k are estimated by taking the values of

the observed sky brightness in the four WVR channels for one

1 http://casa.nrao.edu/

integration time in the middle of the astronomical observation,
and fitting a model for the atmospheric emission. The model
used is a relatively simple, thin single-layer model with pressure,
temperature and column density of the water vapour all treated
as free parameters constrained to a range of feasible values. The
model and the procedure used to fit it to the observations are
described in detail by Nikolic (2009) and Nikolic et al. (2012).
The same model, together with the inferred atmospheric param-
eters, is then used to estimate the phase correction coefficients.
We show in Sect. 5 that this estimate of the phase correction
coefficients is sufficiently good for the longest baseline lengths
that we have been able to test so far (Bmax ∼ 600 m). A fit to
observations from just one antenna is used to calculate the phase
correction coefficients for the entire array. We find that this is an
adequate approximation for the relatively short baselines used
with ALMA so far, but a more exact treatment may be needed
when longer baselines come into operation.

In principle, there is a significant amount of freedom in se-
lection of the weighting factors for combining the path estimates
from each channel (Stirling et al. 2004). The design work was
based on assumption that they would be chosen to minimise the
expected path fluctuation due the random Gaussian-like noise
intrinsic to the radiometers and this is what the current soft-
ware system implements. In this case the weightings factors are
simply:

1
wk

=

(
δTB,k

dL
dTB,k

)2 ∑
i

 1
δTB,i

dL
dTB,i

2

(11)

where δTB,k is the expected intrinsic noise in the kth channel.
Alternative strategies can provide slightly better overall perfor-
mance in certain conditions but at the cost of greater effect of in-
trinsic noise. For example, in the case of relatively wet weather
the centre of the line is saturated and the measured sky bright-
ness fluctuations then correspond not only to water vapour col-
umn and intrinsic noise fluctuations but also to the fluctuations
of the physical temperature of the water vapour layer. In this case
the measurement of path would be improved by down-weighting
the contribution of the central channel further than indicated by
Eq. (11). Such additional re-weightings are a subject for fur-
ther study and have not yet been implemented in the production
software.

The results of phase correction can often be improved
slightly by scaling down the entire correction. The reason for
this is that the intrinsic noise in the WVRs, and other sources
of error in the estimated phase correction, are usually not corre-
lated with the true atmospheric phase fluctuations. In more de-
tail, the phase correction we estimate δ̂L, for example accord-
ing to Eq. (10), can be decomposed into the “true” atmospheric
phase change δL and an error term E:

δ̂L = δL + E. (12)

If this best estimate of atmospheric phase fluctuations is applied
to correct the observed data, then the residual will be E and the
rms of the residual is simply:

rms [E] =

√〈
E2〉 − 〈E〉2. (13)

Since we are dealing with fluctuations and error terms we can
drop the mean terms, i.e., we assume in the following that
〈E〉 = 0 and 〈δL〉 = 0.

A104, page 7 of 11

http://casa.nrao.edu/


A&A 552, A104 (2013)

If, instead of correcting using the best estimate of atmo-
spheric fluctuations, we scale our estimate by a factor α before
applying the correction, we find that the rms of the residual is:

rms [δL − αδ̂L] = rms [(1 − α)δL − αE] (14)

=

√
(1 − α)2 〈

δL2〉 − α(1 − α) 〈δL · E〉 + α2 〈
E2〉. (15)

In most cases, and especially when the error term is dominated
by the intrinsic thermal-like noise in the WVRs, the error term
E is uncorrelated with the true atmospheric error, and therefore
〈δL · E〉 ≡ 0. The residual rms then reduces to:

rms [δL − αδ̂L] =

√
(1 − α)2 〈

δL2〉 + α2 〈
E2〉. (16)

This expression, i.e., the residual phase fluctuation, has a mini-
mum when α

〈
E2

〉
= (1 − α)

〈
δL2

〉
, i.e.:

αmin =

〈
δL2

〉
〈
δL2〉 +

〈
E2〉 · (17)

It can be seen from this expression that when the true atmo-
spheric path fluctuations dominate the noise term, δL � E, it
is best to apply essentially the entire correction. However, when
the two terms are approximately the same δL ∼ E, which is of-
ten the case on the very shortest ALMA baselines, then it is op-
timal to apply only half of the best estimate of the atmospheric
path fluctuations. The optimum scaling therefore depends on the
configuration in which ALMA is observing and the atmospheric
stability. Currently this scaling is implemented as a simple user-
tunable parameter.

By default the ALMA WVRs integrate the sky observations
for 1.152 s, resulting in noise well below 0.1 K rms in all of the
channels. This is usually sufficiently low to ensure that the result-
ing contribution to the phase error is small. In very stable con-
ditions and for short baselines it may be desirable to smooth the
observed radiometer data somewhat, i.e. use a longer integration
time, in particular if the integration period of the astronomical
signal is also longer than 1.152 s.

4.1. Quality control and atmospheric conditions monitoring

It is useful to derive feedback on the likely quality of the
WVR correction directly from the sky brightness temperature
measurements since this avoids the need for longer specialised
observations on quasars. We use two simple statistics to help
identify any potential problems with WVRs or with the likely
efficiency of the phase correction.

The first statistic is simply the root-mean-square fluctuation
of the estimated path from each of the WVRs. This is computed
by considering only data taken while the antennas were observ-
ing one object (usually the science source) within a scheduling
block. Additionally, before computing the rms, the path is cor-
rected for the changing airmass during the observation as the
target object is tracked by the antenna. These steps ensure that
the path rms is representative of the actual atmospheric stability
or, potentially, of any problems within the WVR.

The second statistic that is computed is the difference be-
tween estimates of path fluctuations obtained independently
from two channels of the WVR (the weighting and combining
of channels is not done in this case). Since the optimum phase
correction coefficients of the channels depend in a different way
on the atmospheric properties, this statistic is useful for iden-
tifying errors in the phase correction coefficients due to wrong

inference of atmospheric properties. This statistic is also useful
because any fluctuation in sky brightness due to variable cloud
cover will affect the channels in different ways, with the outer
channels showing the largest effect in proportion to that of the
water.

Although problems with ALMA radiometers have been rare
so far, computing these quality control statistics is important be-
cause problems may not be apparent in astronomical data when
they are processed.

4.2. Dealing with missing WVRs

ALMA will need to deal with antennas which do not have
functioning WVRs. One of the reasons for this is that ALMA
consists of two arrays of antennas: the “12 m Array” which
will have 50 12 m-diameter antennas and the Atacama Compact
Array (ACA) which will consist of four 12 m-diameter and
twelve 7 m-diameter antennas. The ACA is designed to operate
independently of the 12 m Array and with such short baselines it
only needs basic phase correction. It is therefore not planned for
the 7 m-diameter antennas to have their own WVRs but rather
for them to use the data from nearby 12 m-diameter antennas.
Other possible reasons for missing WVR data are faults in the
hardware or problems in transmitting the data.

The simplest approach for dealing with missing data is
to interpolate neighbouring antennas to compute a predicted
WVR signal and use this predicted WVR signal throughout the
remainder of the analysis. We have implemented interpolation
as the weighted mean of signals from nearest three antennas,
with the weighting factor proportional to inverse distance to the
antenna. We find that this operates satisfactorily in the com-
pact ALMA configurations since there are usually antennas with
WVR measurements available that are reasonably close at hand.

5. Initial results of phase correction

The effectiveness of phase correction can be measured by ob-
serving known point-like sources (typically quasars) and com-
paring the measured phases to the expected values. For a point-
like source at the phase tracking centre of the interferometer, the
phase and amplitude of visibilities is expected to be constant for
all baselines and therefore any fluctuation in phases is due to a
combination of following effects:

1. atmospheric phase fluctuations;
2. instrumental effects;
3. noise in the measurement of the astronomical visibility.

Here we summarise the results of initial measurements of effec-
tiveness of radiometric phase correction, which were all made
with ALMA in compact configurations, i.e. with baseline lengths
between 15 and 650 m.

As shown in Eq. (10) the path (and therefore phase) correc-
tion for an antenna over short periods of time is described by a
linearised relation with the changes in each of the WVR chan-
nels. Since the fluctuation in phase of visibility is proportional
to the difference in path to the two antennas forming the baseline
over which the visibility is measured, Eq. (10) implies that there
should be proportionality between the phase fluctuations and the
difference of readings of the WVRs on the two antennas.

A good way of visualising the potential efficiency of
WVR phase correction is therefore to plot the correlation be-
tween these two quantities, i.e. the path fluctuation and the dif-
ference between WVR measurements, as a two dimensional his-
togram. We show these for a typical observation in Fig. 7. In
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Fig. 7. Correlation between the atmospheric path error estimated from observations of a bright point-like object (horizontal axis) and the differenced
WVR signal (vertical axis). Both the estimated path from astronomical visibilities and the WVR difference were filtered by removing the three
minute running mean. Each plot is a two-dimensional histogram where the colour scale shows how many points fall in each bin. The four panels
correspond to the four channels of the radiometers.

this figure we analyse each channel of the WVR separately and
so the figure contains four plots, one for each channel. In each
plot, the difference between outputs of WVRs on the two anten-
nas is used to place the data on the vertical axis while the phase
of the visibility is converted to an apparent path fluctuation and
used to place data on the horizontal axis. The density of points
is shown by the colour. In order to concentrate on the changes
in path over short timescales, both the observed path fluctuation
and the WVR output differences were filtered to remove their
running mean over 300 s.

It can be seen in Fig. 7 that the correlation between the WVR
differences and the measured path fluctuations is very tight. A
formal regression analysis shows that the adjusted R2 values
are 0.82–0.9, depending on the channels, and the rms residuals
in terms of brightness temperature differences are 0.13–0.19 K.
This can be compared to expected rms residuals of 0.1–0.14 K
due to thermal noise in the WVRs only. Furthermore it can be
seen that there are no out-lying points which would be seen if
there were spikes or glitches in either the WVR measurements
or the interferometric phases.

The improvement in phase stability of astronomical visibil-
ity after WVR correction is illustrated in Figs. 8 and 9. The
first figure (Fig. 8) shows the improvement in relatively humid

conditions (PWV ∼ 2.2 mm) during unstable daytime conditions
on baseline which is about 650 m long. As can be seen the phase
fluctuations are reduced by almost an order of magnitude (in
terms of path rms from about 1 mm to 0.16 mm), meaning that
they are reduced from a level which would almost completely
decorrelate the signal to one which is adequate for interferomet-
ric imaging.

The results in the dry (PWV ∼ 0.5 mm) and stable night-time
conditions on a short baseline of ∼20 m are shown in Fig. 9. In
this example the path fluctuation (after removing the 3 min run-
ning mean) is reduced from 14 µm to 7 µm. Although the rel-
ative improvement is much smaller than that shown in Fig. 8,
this example illustrates the very high absolute level of perfor-
mance that can be achieved. Both examples also illustrate the
good long-term stability of the WVRs with no noticeable drift.

The initial testing has confirmed the presence of some short-
comings which were, to some extent, anticipated during the de-
sign stage. The most obvious of these is the effect of cloud on
the phase correction. Variable cloud cover causes fluctuations in
sky brightness which do not have the same relation to the path
fluctuation as those due to water vapour and this leads to erro-
neous phase correction. Even on relatively short baselines this
effect has been found the be large enough to make the phases
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Fig. 8. Test observation at 90 GHz of a strong quasar on a ∼650 m base-
line with ALMA. The red line is the phase of the observed (complex)
visibility on this baseline – note that for a quasar (or other point-like)
source at the tracking centre of the interferometer we expect a constant
phase in time. The blue line is the visibility phase after correction of the
data based on the WVR signals and using the wvrgcal program.

−20

−10

0

10

20

D
eg
re
es

D
eg
re
es

0 200 400 600 800 1000

Time (s)Time (s)

Fig. 9. Test observation on a short (∼25 m) baseline in excellent weather
conditions. The phase of the uncorrected astronomical visibility is again
in red while the phase after WVR correction is in blue. Note the much
smaller range of the vertical axis compared to Fig. 8.

after correction worse than before correction on some occasions.
While sky brightness measurements from the outermost channel
have been useful in identifying when clouds are making a signif-
icant contribution to sky brightness, we have not yet found a way
of using these measurements in a way that improves the phase
correction in the presence of clouds.

The second shortcoming which has been identified is the
presence of residual phase errors which are not correlated with
the water vapour signal. The residual errors only become no-
ticeable in quite dry conditions and their magnitude appears to
increase with increasing length of the baseline. The origin of
these residual errors has not yet been identified conclusively but
it seems likely they are due to the fluctuations of refractive index
of the dry component of the air, i.e. density fluctuations. Such
density fluctuations will arise from temperature variations, espe-
cially in the daytime, but there may also be a component due to
the dynamical pressure changes caused by the wind.

An important aspect of phase correction which we have
not examined in this paper is the performance of the correc-
tion in combination with phase referencing. In this case the
WVR corrections can first be applied to the whole sequence of
data, consisting of interleaved observations of the astronomical
source and the calibrator, and a further correction, based on the

remaining phase variations seen in the calibrator, can then be
applied to the astronomical data. This combination of the two
corrections should result in better imaging quality than the ap-
plication of either of the corrections on its own, since it addresses
both the short-term atmospheric fluctuations and the somewhat
longer-term phase drifts in the interferometer system. Phase ref-
erencing can however involve a significant change in telescope
elevation. This might lead to instrumental effects in the WVRs
which would cause errors in their readings. More significantly
the changes in the observed sky brightness (due to change in air-
mass) may be quite large. Although the changes in brightness
will be common for all the antennas in the array, small differ-
ences in the factors on the different WVRs that convert from
sky brightness to excess path will produce errors in the phase
corrections. Such elevation-dependent errors can mimic other
sources of error, such as those due to inaccurately determined
positions of the telescopes. We have not yet been able to make a
proper assessment of the errors, where we can separate the var-
ious contributions, in the case of phase-referenced observations.
In practice, the impact of such errors on ALMA observations
can often be reduced by using self-calibration on timescales
which are long enough to provide adequate signal to noise ratio
but short enough to correct for the slowly changing elevation-
dependent errors. Additionally, the sensitivity of ALMA is in-
creasing as more telescopes are commissioned into the array and
this means fainter (and therefore closer) phase calibrators can be
used, which reduces any elevation-dependent errors. The accu-
racy of phase correction when combined with phase referencing
is nevertheless an important topic which we hope to examine as
part of future work.

6. Summary

We have described the design of the ALMA water-vapour ra-
diometer phase-correction system. Compared to most previous
systems, the ALMA system has the following advantages:

1. it observes the very strong 183 GHz water vapour line which
has a phase correction coefficient (i.e., the relationship be-
tween sky brightness change and electrical path change) as
high as 40 K/mm;

2. internal continuous two-load calibration;
3. optical and mechanical design optimised during telescope

design stages, giving low spill-over and rigid telescope
mounting.

Additionally ALMA has the advantage that it is at a higher and
dryer site, leading to intrinsically smaller water vapour fluctu-
ations, and that its sensitivity is large, which means that phase
calibration sources can often be found close to science targets.

The successes of this system to date include:

1. initial tests of the phase correction system have shown that
the radiometers have excellent sensitivity and stability;

2. significant and often dramatic improvement in phase stability
have been achieved under most conditions;

3. phase correction is already in routine use for ALMA science
observing.

The main limitations are erroneous phase corrections when there
is thick cloud cover and the presence of some residual phase
errors which may be due to air-density fluctuations.
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