944 research outputs found
Impact of 40 years poplar cultivation on soil carbon stocks and greenhouse gas fluxes
International audienceWithin the JRC Kyoto Experiment in the Regional Park and UN-Biosphere Reserve "Parco Ticino" (North-Italy, near Pavia), the soil carbon stocks and fluxes of CO2, N2O, and CH4 were measured in a poplar plantation in comparison with a natural mesohygrophilous deciduous forest nearby, which represents the pristine land cover of the area. Soil fluxes were measured using the static and dynamic closed chamber techniques for CH4 N2O, and CO2, respectively. We made further a pedological study to relate the spatial variability found with soil parameters. Annual emission fluxes of N2O and CO2 and deposition fluxes of CH4 were calculated for the year 2003 for the poplar plantation and compared to those measured at the natural forest site. N2O emissions at the poplar plantation were 0.15$plusmn;0.1 g N2O m-2 y-1 and the difference to the emissions at the natural forest of 0.07±0.06 g N2O m-2 y-1 are partly due to a period of high emissions after the flooding of the site at the end of 2002. CH4 consumption at the natural forest was twice as large as at the poplar plantation. In comparison to the relict forest, carbon stocks in the soil under the poplar plantation were depleted by 61% of surface (10 cm) carbon and by 25% down the profile under tillage (45 cm). Soil respiration rates were not significant different at both sites with 1608±1053 and 2200±791 g CO2 m-2 y-1 at the poplar plantation and natural forest, respectively, indicating that soil organic carbon is much more stable in the natural forest. In terms of the greenhouse gas budget, the non-CO2 gases contributed minor to the overall soil balance with only 0.9% (N2O) and -0.3% (CH4 of CO2-eq emissions in the natural forest, and 2.7% (N2O) and -0.2% of CO2-eq. emissions in the poplar plantation. The very high spatial variability of soil fluxes within the two sites was related to the morphology of the floodplain area, which was formed by the historic course of the Ticino river and led to a small-scale (tenth of meters) variability in soil texture and to small-scale differences in elevation. Differences of site conditions are reflected by differences of inundation patterns, ecosystem productivity, CO2 and N2O emission rates, and soil contents of carbon and nitrogen. Additional variability was observed during a flooding event and after fertilisation at the poplar site. Despite of this variability, the two sites are comparable as both originate from alluvial deposits. The study shows that changes in soil carbon stocks and related fertility are the most visible phenomena after 40 years of land use change from a pristine forest to a fast growing poplar plantation. Therefore, the conservation and careful management of existing carbon stocks deserves highest priority in the context of the Kyoto Protocol
A new European plant-specific emission inventory of biogenic volatile organic compounds for use in atmospheric transport models
We present a new European plant-specific emission inventory for isoprene, monoterpenes, sesquiterpenes and oxygenated VOC (OVOC), on a spatial resolution of 0.089×0.089 degrees, for implementation in atmospheric transport models. The inventory incorporates more accurate data on foliar biomass densities from several litterfall databases that became available in the last years for the main tree species in Europe. A bioclimatic correction factor was introduced to correct the foliar biomass densities of trees and crops for the different plant growth conditions that can be found in Pan-Europe. Long-term seasonal variability of agriculture and forest emissions was taken into account by implementing a new growing season concept. The 2004â2005 averaged annual total biogenic volatile organic compound (BVOC) emissions for the Pan-European domain are estimated to be about 12 Tg with a large contribution from the OVOC class of about 4.5 Tg and from monoterpenes of about 4 Tg. Annual isoprene emissions are found to be about 3.5 Tg, insensitive to the chosen emission algorithm. Emissions of OVOC were found to originate to a large extent from agriculture. Further experiments on crop emissions should be carried out to check the validity of the applied standard emission factors. The new inventory aims at a fully transparent and verifiable aggregation of detailed land use information and at the inclusion of plant-specific emission data. Though plant-specific land use data is available with relatively high accuracy, a lack of experimental biomass densities and emission data on terpenes, sesquiterpenes and oxygenated VOC, in particular for agricultural plants, currently limits the setup of a highly accurate plant-specific emission inventory
Emission of monoterpenes from European beech (<i>Fagus</i><i> sylvatica</i> L.) as a function of light and temperature
International audienceUsing a dynamic branch enclosure technique European beech (Fagus sylvatica L.) was characterised as a strong emitter of monoterpenes, with sabinene being the predominant compound released. Since monoterpene emission was demonstrated to be a function of light and temperature, application of light and temperature dependent algorithms resulted in reasonable agreement with the measured data. Furthermore, during high temperature periods the depression of net CO2 exchange during midday (midday depression) was accompanied by a depression of monoterpene emission on one occasion. The species dependent standard emission factor and the light and temperature regulated release of monoterpenes is of crucial importance for European VOC emissions. All measurements were performed within the framework of the ECHO project (Emission and CHemical transformation of biogenic volatile Organic compounds) during two intensive field campaigns in the summers of 2002 and 2003
Characterizing ecosystem-atmosphere interactions from short to interannual time scales
International audienceCharacterizing ecosystem-atmosphere interactions in terms of carbon and water exchange on different time scales is considered a major challenge in terrestrial biogeochemical cycle research. The respective time series currently comprise an observation period of up to one decade. In this study, we explored whether the observation period is already sufficient to detect cross-relationships between the variables beyond the annual cycle, as they are expected from comparable studies in climatology. We investigated the potential of Singular System Analysis (SSA) to extract arbitrary kinds of oscillatory patterns. The method is completely data adaptive and performs an effective signal to noise separation. We found that most observations (Net Ecosystem Exchange, NEE, Gross Primary Productivity, GPP, Ecosystem Respiration, Reco, Vapor Pressure Deficit, VPD, Latent Heat, LE, Sensible Heat, H, Wind Speed, u, and Precipitation, P) were influenced significantly by low-frequency components (interannual variability). Furthermore, we extracted a set of nontrivial relationships and found clear seasonal hysteresis effects except for the interrelation of NEE with Global Radiation (Rg). SSA provides a new tool for the investigation of these phenomena explicitly on different time scales. Furthermore, we showed that SSA has great potential for eddy covariance data processing, since it can be applied as a novel gap filling approach relying on the temporal correlation structure of the time series structure only
Stripe-Like hBN Monolayer Template for Self-Assembly and Alignment of Pentacene Molecules
Metallic surfaces with unidirectional anisotropy are often used to guide the self-assembly of organic molecules along a particular direction. Such supports thus offer an avenue for the fabrication of hybrid organicâmetal interfaces with tailored morphology and precise elemental composition. Nonetheless, such control often comes at the expense of detrimental interfacial interactions that might quench the pristine properties of molecules. Here, hexagonal boron nitride grown on Ir(100) is introduced as a robust platform with several coexisting 1D stripe-like moireÌ superstructures that effectively guide unidirectional self-assemblies of pentacene molecules, concomitantly preserving their pristine electronic properties. In particular, highly-aligned longitudinal arrays of equally-oriented molecules are formed along two perpendicular directions, as demonstrated by comprehensive scanning tunneling microscopy and photoemission characterization performed at the local and non-local scale, respectively. The functionality of the template is demonstrated by photoemission tomography, a surface-averaging technique requiring a high degree of orientational order of the probed molecules. The successful identification of pentacene's pristine frontier orbitals underlines that the template induces excellent long-range molecular ordering via weak interactions, preventing charge transfer
Picosecond Nonlinear Relaxation of Photoinjected Carriers in a Single GaAs/AlGaAs Quantum Dot
Photoemission from a single self-organized GaAs/AlGaAs quantum dot (QD) is
temporally resolved with picosecond time resolution. The emission spectra
consisting of the multiexciton structures are observed to depend on the delay
time and the excitation intensity. Quantitative agreement is found between the
experimental data and the calculation based on a model which characterizes the
successive relaxation of multiexcitons. Through the analysis we can determine
the carrier relaxation time as a function of population of photoinjected
carriers. Enhancement of the intra-dot carrier relaxation is demonstrated to be
due to the carrier-carrier scattering inside a single QD.Comment: 4 pages, 4 figures, to be published in Phys. Rev. B, Rapid
New Perspectives for Spinal Cord Stimulation in Parkinsonâs Disease-Associated Gait Impairment: A Systematic Review
Parkinsonâs Disease is a neurodegenerative disorder manifesting itself as a hypokinetic movement impairment with postural instability and gait disturbance. In case of failure and/or limited response, deep brain stimulation has been established as an alternative and effective treatment modality. However, a subset of PD patients with gait impairment represents a therapeutic challenge. A systematic review (2000â2023) was performed using PubMed, Embase, Web of Science, Scopus, and Cochrane Library databases to determine the efficacy, stimulation waveform/parameters, spine level, and outcome measures of spinal cord stimulation using different waveforms in PD patients with and without chronic pain. Spinal cord stimulation responsiveness was assessed within the pre-defined follow-up period in three groups (short-term follow-up = 0â3 months; intermediate follow-up = 3â12 months; and long-term follow-up = more than 12 months). In addition, we briefly outline alternative neurostimulation therapies and the most recent developments in closed-loop spinal cord stimulation relevant to PD. In summary, 18 publications and 70 patients from uncontrolled observational trials were included, with low-quality evidence and conflicting findings. First and foremost, the currently available data do not support the use of spinal cord stimulation to treat PD-related gait disorders but have confirmed its usefulness for PD-associated chronic pain.This research received no external funding
- âŠ