850 research outputs found
Inertial and dimensional effects on the instability of a thin film
We consider here the effects of inertia on the instability of a flat liquid
film under the effects of capillary and intermolecular forces (van der Waals
interaction). Firstly, we perform the linear stability analysis within the long
wave approximation, which shows that the inclusion of inertia does not produce
new regions of instability other than the one previously known from the usual
lubrication case. The wavelength, , corresponding to he maximum
growth, , and the critical (marginal) wavelength do not change at
all. The most affected feature of the instability under an increase of the
Laplace number is the noticeable decrease of the growth rates of the unstable
modes. In order to put in evidence the effects of the bidimensional aspects of
the flow (neglected in the long wave approximation), we also calculate the
dispersion relation of the instability from the linearized version of the
complete Navier-Stokes (N-S) equation. Unlike the long wave approximation, the
bidimensional model shows that can vary significantly with inertia
when the aspect ratio of the film is not sufficiently small. We also perform
numerical simulations of the nonlinear N-S equations and analyze to which
extent the linear predictions can be applied depending on both the amount of
inertia involved and the aspect ratio of the film
Large variation in the boundary-condition slippage for a rarefied gas flowing between two surfaces
We study the slippage of a gas along mobile rigid walls in the sphere-plane
confined geometry and find that it varies considerably with pressure. The
classical no-slip boundary condition valid at ambient pressure changes
continuously to an almost perfect slip condition in a primary vacuum. Our study
emphasizes the key role played by the mean free-path of the gas molecules on
the interaction between a confined fluid and solid surfaces and further
demonstrates that the macroscopic hydrodynamics approach can be used with
confidence even in a primary vacuum environment where it is intuitively
expected to fail
Casimir force measurements in Au-Au and Au-Si cavities at low temperature
We report on measurements of the Casimir force in a sphere-plane geometry
using a cryogenic force microscope to move the force probe in situ over
different materials. We show how the electrostatic environment of the
interacting surfaces plays an important role in weak force measurements and can
overcome the Casimir force at large distance. After minimizing these parasitic
forces, we measure the Casimir force between a gold-coated sphere and either a
gold-coated or a heavily doped silicon surface in the 100-400 nm distance
range. We compare the experimental data with theoretical predictions and
discuss the consequence of a systematic error in the scanner calibration on the
agreement between experiment and theory. The relative force over the two
surfaces compares favorably with theory at short distance, showing that this
Casimir force experiment is sensitive to the dielectric properties of the
interacting surfaces.Comment: accepted for publication in Physical Review
Development of a Diaphragm Stirling Cryocooler
Callaghan Innovation, formerly Industrial Research Ltd, has developed a novel free-piston Stirling cryocooler concept using metal diaphragms. The concept uses a pair of metal diaphragms to seal and suspend the displacer of a free-piston Stirling cryocooler. The diaphragms allow the displacer to move without rubbing or moving seals, thus resulting in a long-life mechanism. When coupled to a metal diaphragm pressure wave generator, the system produces a complete Stirling cryocooler with no rubbing parts in the working gas space. Initial modeling of this concept using the Sage modelling tool indicates the potential for a useful cryocooler. A proof-of-concept prototype was constructed and achieved cryogenic temperatures. CFD modeling of the heat transfer in the radial flow fields created by the diaphragms shows the possibility of utilizing the flat geometry for heat transfer, reducing the need for, and the size of, expensive heat exchangers. A second prototype has been designed and constructed using the experience gained from the first. Further CFD modeling has been used to understand the underlying fluid-dynamic and heat transfer mechanisms and refine the Sage1 model. The prototype produces 29 W of cooling at 77 K and reaches a no-load temperature of 56 K. This paper presents details of the development, modeling and testing of the second iteration prototype
Relative contributions of solid skeleton visco-plasticity and water viscosity to the poro-mechanics behavior of callovo-oxfordian claystone
The Callovo-Oxfordian claystone is a saturated porous medium. Its transfer properties, including its low permeability [16] make it an interesting candidate for underground radioactive waste disposal.
The drained tests performed on the claystone, collected by ANDRA1 from samples at 500 meters depth [16, 9], exhibits a damageable visco-elasto-plastic behavior. This viscous behavior includes both the viscosity of the skeleton and the water. In existing models [5, 6, 11, 1], the creep phenomena are attributed either to the water permeability, to the skeleton visco-plasticity or sometimes both [13].
In a first step, a simplified analysis is proposed to understand the contribution of each phenomenon with respect to the consolidation time. This study indicates that the apparent characteristic time is the sum of those related to the skeleton and water permeability.
To handle both non-linear and viscous phenomena, the damage law [15], coupled with the basic creep model [14] is used to characterize the solid skeleton of the claystone. The fluid behavior is integrated with the poro-mechanical model [7] implemented in the finite element code CAST3M [4]. The proposed model (visco-elastic damageable skeleton + saturating fluid) is used to simulate an excavation from the ANDRA underground laboratory (located in Bure–France).
This application allows the understanding of how both viscous phenomena combine at each step of the calculation. Just after the excavation, water overpressure decreases near the gallery approaching zero due to the damage and then increases the permeability. The viscosity is then controlled by the solid skeleton creep rates. Later, the redistribution of hydraulic pressure is of more importance and permeability again plays a major role
Half-integer Shapiro steps at the 0-pi crossover of a ferromagnetic Josephson junction
We investigate the current-phase relation of S/F/S junctions near the
crossover between the 0 and the pi ground states. We use Nb/CuNi/Nb junctions
where this crossover is driven both by thickness and temperature. For a certain
thickness a non-zero minimum of critical current is observed at the crossover
temperature. We analyze this residual supercurrent by applying a high frequency
excitation and observe the formation of half-integer Shapiro steps. We
attribute these fractional steps to a doubling of the Josephson frequency due
to a sin(2*phi) current-phase relation. This phase dependence is explained by
the splitting of the energy levels in the ferromagnetic exchange field.Comment: 4 pages, 5 figures, accepted for publication in Phys. Rev. Let
Inhomogeneous superconductivity induced in a weak ferromagnet
Under certain conditions, the order parameter induced by a superconductor (S)
in a ferromagnet (F) can be inhomogeneous and oscillating, which results e.g.
in the so-called pi-coupling in S/F/S junctions. In principle, the
inhomogeneous state can be induced at T_c as function of the F-layer thickness
d_F in S/F bilayers and multilayers, which should result in a dip-like
characteristic of T_c(d_F). We show the results of measurements on the S/F
system Nb/Cu_{1-x}Ni_x, for Ni-concentrations in the range x = 0.5-0.7, where
such effects might be expected. We find that the critical thickness for the
occurrence of superconductivity is still relatively high, even for these weak
ferromagnets. The resulting dip then is intrinsically shallow and difficult to
observe, which explains the lack of a clear signature in the T_c(d_F) data.Comment: 4 pages, 4 figures. To be publishedin Physica C (proceedings of the
Second Euroconference on Vortex Matter in Superconductors, Crete, 2001
Recommended from our members
Debiasing training transfers to improve decision making in the field
The primary objection to debiasing training interventions is a lack of evidence that they transfer to improve decision making in field settings, where reminders of bias are absent. We gave graduate students in three professional programs (N = 290) a one-shot training intervention that reduces confirmation bias in laboratory experiments. Natural variance in the training schedule assigned participants to receive training before or after solving an unannounced business case modeled on the decision to launch the Space Shuttle Challenger. We used case solutions to surreptitiously measure their susceptibility to confirmation bias. Trained participants were 29% less likely to choose the inferior hypothesis-confirming solution than untrained participants. Analysis of case write-ups suggests that a reduction in confirmatory hypothesis testing accounts for their improved decision making in the case. The results provide promising evidence that debiasing training effects transfer to field settings and can improve consequential decisions in professional and private life
Non-identifiability of the Rayleigh damping material model in magnetic resonance elastography
Magnetic Resonance Elastography (MRE) is an emerging imaging modality for quantifying soft tissue elasticity deduced from displacement measurements within the tissue obtained by phase sensitive Magnetic Resonance Imaging (MRI) techniques. MRE has potential to detect a range of pathologies, diseases and cancer formations, especially tumors. The mechanical model commonly used in MRE is linear viscoelasticity (VE). An alternative Rayleigh damping (RD) model for soft tissue attenuation is used with a subspace-based nonlinear inversion (SNLI) algorithm to reconstruct viscoelastic properties, energy attenuation mechanisms and concomitant damping behavior of the tissue-simulating phantoms. This research performs a thorough evaluation of the RD model in MRE focusing on unique identification of RD parameters, μIμI and ρIρI.
Results show the non-identifiability of the RD model at a single input frequency based on a structural analysis with a series of supporting experimental phantom results. The estimated real shear modulus values (μRμR) were substantially correct in characterising various material types and correlated well with the expected stiffness contrast of the physical phantoms. However, estimated RD parameters displayed consistent poor reconstruction accuracy leading to unpredictable trends in parameter behaviour. To overcome this issue, two alternative approaches were developed: (1) simultaneous multi-frequency inversion; and (2) parametric-based reconstruction. Overall, the RD model estimates the real shear shear modulus (μRμR) well, but identifying damping parameters (μIμI and ρIρI) is not possible without an alternative approach
- …