29 research outputs found

    Human Intelligence and Polymorphisms in the DNA Methyltransferase Genes Involved in Epigenetic Marking

    Get PDF
    Epigenetic mechanisms have been implicated in syndromes associated with mental impairment but little is known about the role of epigenetics in determining the normal variation in human intelligence. We measured polymorphisms in four DNA methyltransferases (DNMT1, DNMT3A, DNMT3B and DNMT3L) involved in epigenetic marking and related these to childhood and adult general intelligence in a population (n = 1542) consisting of two Scottish cohorts born in 1936 and residing in Lothian (n = 1075) or Aberdeen (n = 467). All subjects had taken the same test of intelligence at age 11yrs. The Lothian cohort took the test again at age 70yrs. The minor T allele of DNMT3L SNP 11330C>T (rs7354779) allele was associated with a higher standardised childhood intelligence score; greatest effect in the dominant analysis but also significant in the additive model (coefficient = 1.40additive; 95%CI 0.22,2.59; p = 0.020 and 1.99dominant; 95%CI 0.55,3.43; p = 0.007). The DNMT3L C allele was associated with an increased risk of being below average intelligence (OR 1.25additive; 95%CI 1.05,1.51; p = 0.011 and OR 1.37dominant; 95%CI 1.11,1.68; p = 0.003), and being in the lowest 40th (padditive = 0.009; pdominant = 0.002) and lowest 30th (padditive = 0.004; pdominant = 0.002) centiles for intelligence. After Bonferroni correction for the number variants tested the link between DNMT3L 11330C>T and childhood intelligence remained significant by linear regression and centile analysis; only the additive regression model was borderline significant. Adult intelligence was similarly linked to the DNMT3L variant but this analysis was limited by the numbers studied and nature of the test and the association was not significant after Bonferroni correction. We believe that the role of epigenetics in the normal variation in human intelligence merits further study and that this novel finding should be tested in other cohorts

    LTC: a novel algorithm to improve the efficiency of contig assembly for physical mapping in complex genomes

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Physical maps are the substrate of genome sequencing and map-based cloning and their construction relies on the accurate assembly of BAC clones into large contigs that are then anchored to genetic maps with molecular markers. High Information Content Fingerprinting has become the method of choice for large and repetitive genomes such as those of maize, barley, and wheat. However, the high level of repeated DNA present in these genomes requires the application of very stringent criteria to ensure a reliable assembly with the FingerPrinted Contig (FPC) software, which often results in short contig lengths (of 3-5 clones before merging) as well as an unreliable assembly in some difficult regions. Difficulties can originate from a non-linear topological structure of clone overlaps, low power of clone ordering algorithms, and the absence of tools to identify sources of gaps in Minimal Tiling Paths (MTPs).</p> <p>Results</p> <p>To address these problems, we propose a novel approach that: (i) reduces the rate of false connections and Q-clones by using a new cutoff calculation method; (ii) obtains reliable clusters robust to the exclusion of single clone or clone overlap; (iii) explores the topological contig structure by considering contigs as networks of clones connected by significant overlaps; (iv) performs iterative clone clustering combined with ordering and order verification using re-sampling methods; and (v) uses global optimization methods for clone ordering and Band Map construction. The elements of this new analytical framework called Linear Topological Contig (LTC) were applied on datasets used previously for the construction of the physical map of wheat chromosome 3B with FPC. The performance of LTC vs. FPC was compared also on the simulated BAC libraries based on the known genome sequences for chromosome 1 of rice and chromosome 1 of maize.</p> <p>Conclusions</p> <p>The results show that compared to other methods, LTC enables the construction of highly reliable and longer contigs (5-12 clones before merging), the detection of "weak" connections in contigs and their "repair", and the elongation of contigs obtained by other assembly methods.</p

    Epistatic Association Mapping in Homozygous Crop Cultivars

    Get PDF
    The genetic dissection of complex traits plays a crucial role in crop breeding. However, genetic analysis and crop breeding have heretofore been performed separately. In this study, we designed a new approach that integrates epistatic association analysis in crop cultivars with breeding by design. First, we proposed an epistatic association mapping (EAM) approach in homozygous crop cultivars. The phenotypic values of complex traits, along with molecular marker information, were used to perform EAM. In our EAM, all the main-effect quantitative trait loci (QTLs), environmental effects, QTL-by-environment interactions and QTL-by-QTL interactions were included in a full model and estimated by empirical Bayes approach. A series of Monte Carlo simulations was performed to confirm the reliability of the new method. Next, the information from all detected QTLs was used to mine novel alleles for each locus and to design elite cross combination. Finally, the new approach was adopted to dissect the genetic basis of seed length in 215 soybean cultivars obtained, by stratified random sampling, from 6 geographic ecotypes in China. As a result, 19 main-effect QTLs and 3 epistatic QTLs were identified, more than 10 novel alleles were mined and 3 elite parental combinations, such as Daqingdou and Zhengzhou790034, were predicted

    Admixture in Latin America: Geographic Structure, Phenotypic Diversity and Self-Perception of Ancestry Based on 7,342 Individuals

    Get PDF
    The current genetic makeup of Latin America has been shaped by a history of extensive admixture between Africans, Europeans and Native Americans, a process taking place within the context of extensive geographic and social stratification. We estimated individual ancestry proportions in a sample of 7,342 subjects ascertained in five countries (Brazil, Chile, Colombia, México and Perú). These individuals were also characterized for a range of physical appearance traits and for self-perception of ancestry. The geographic distribution of admixture proportions in this sample reveals extensive population structure, illustrating the continuing impact of demographic history on the genetic diversity of Latin America. Significant ancestry effects were detected for most phenotypes studied. However, ancestry generally explains only a modest proportion of total phenotypic variation. Genetically estimated and self-perceived ancestry correlate significantly, but certain physical attributes have a strong impact on self-perception and bias self-perception of ancestry relative to genetically estimated ancestry

    Transcriptome Analysis of Neisseria meningitidis in Human Whole Blood and Mutagenesis Studies Identify Virulence Factors Involved in Blood Survival

    Get PDF
    During infection Neisseria meningitidis (Nm) encounters multiple environments within the host, which makes rapid adaptation a crucial factor for meningococcal survival. Despite the importance of invasion into the bloodstream in the meningococcal disease process, little is known about how Nm adapts to permit survival and growth in blood. To address this, we performed a time-course transcriptome analysis using an ex vivo model of human whole blood infection. We observed that Nm alters the expression of ≈30% of ORFs of the genome and major dynamic changes were observed in the expression of transcriptional regulators, transport and binding proteins, energy metabolism, and surface-exposed virulence factors. In particular, we found that the gene encoding the regulator Fur, as well as all genes encoding iron uptake systems, were significantly up-regulated. Analysis of regulated genes encoding for surface-exposed proteins involved in Nm pathogenesis allowed us to better understand mechanisms used to circumvent host defenses. During blood infection, Nm activates genes encoding for the factor H binding proteins, fHbp and NspA, genes encoding for detoxifying enzymes such as SodC, Kat and AniA, as well as several less characterized surface-exposed proteins that might have a role in blood survival. Through mutagenesis studies of a subset of up-regulated genes we were able to identify new proteins important for survival in human blood and also to identify additional roles of previously known virulence factors in aiding survival in blood. Nm mutant strains lacking the genes encoding the hypothetical protein NMB1483 and the surface-exposed proteins NalP, Mip and NspA, the Fur regulator, the transferrin binding protein TbpB, and the L-lactate permease LctP were sensitive to killing by human blood. This increased knowledge of how Nm responds to adaptation in blood could also be helpful to develop diagnostic and therapeutic strategies to control the devastating disease cause by this microorganism
    corecore