286 research outputs found

    On Chromospheric Variations Modeling for Main-Sequence Stars of G and K Spectral Classes

    Full text link
    We present a method of chromospheric flux simulation for 13 late-type main-sequence stars. These Sun-like stars have well-determined cyclic flux variations similar to 11 yr solar activity cycle. Our flux prediction is based on chromospheric HK emission time series measurements from Mount Wilson Observatory and comparable solar data. We show that solar three - component modeling explains well the stellar observations. We find that the 10 - 20% of K - stars disc surfaces are occupied by bright active regions.Comment: 8 pages, 2 figure

    Book Reviews

    Get PDF
    The article contains reviews and notation of the following books: Hannibal Hamlin of Maine, Lincoln\u27s First Vice President by H. Draper Hunt; Two Decades of Organized Labor and Labor Politics in Maine, 1880-1900 by Charles A. Scontras; The Senator from Maine: Margaret Chase Smith by Alice Fleming; Canada Preserved: The Journal of Captain Thomas Ainslie by Sheldon S. Cohen; Aids to the Teaching of Maine in the Public Schools by Elizabeth Ring; An Illustrated History of Bangor, Maine by James B. Vickery; History of Parkman: Mainstream Democracy in Parkman, Maine 1794-1969 by Roger C. Storms; Camden-Rockport Bicentennial: 1769-1969; Maine: A Guide to the Vacation State by Ray Bears

    Graphene nanoribbons with zigzag and armchair edges prepared by scanning tunneling microscope lithography on gold substrates

    Get PDF
    The properties of graphene nanoribbons are dependent on both the nanoribbon width and the crystallographic orientation of the edges. Scanning tunneling microscope lithography is a method which is able to create graphene nanoribbons with well defined edge orientation, having a width of a few nanometers. However, it has only been demonstrated on the top layer of graphite. In order to allow practical applications of this powerful lithography technique, it needs to be implemented on single layer graphene. We demonstrate the preparation of graphene nanoribbons with well defined crystallographic orientation on top of gold substrates. Our transfer and lithography approach brings one step closer the preparation of well defined graphene nanoribbons on arbitrary substrates for nanoelectronic applications

    Interpreting ~1 Hz magnetic compressional waves in Mercury's inner magnetosphere in terms of propagating ion‐Bernstein waves

    Full text link
    We show that ~1 Hz magnetic compressional waves observed in Mercury's inner magnetosphere could be interpreted as ion‐Bernstein waves in a moderate proton beta ~0.1 plasma. An observation of a proton distribution with a large planetary loss cone is presented, and we show that this type of distribution is highly unstable to the generation of ion‐Bernstein waves with low magnetic compression. Ray tracing shows that as these waves propagate back and forth about the magnetic equator; they cycle between a state of low and high magnetic compression. The group velocity decreases during the high‐compression state leading to a pileup of compressional wave energy, which could explain the observed dominance of the highly compressional waves. This bimodal nature is due to the complexity of the index of refraction surface in a warm plasma whose upper branch has high growth rate with low compression, and its lower branch has low growth/damping rate with strong compression. Two different cycles are found: one where the compression maximum occurs at the magnetic equator and one where the compression maximum straddles the magnetic equator. The later cycle could explain observations where the maximum in compression straddles the equator. Ray tracing shows that this mode is confined within ±12° magnetic latitude which can account for the bulk of the observations. We show that the Doppler shift can account for the difference between the observed and model wave frequency, if the wave vector direction is in opposition to the plasma flow direction. We note that the Wentzel‐Kramers‐Brillouin approximation breaks down during the pileup of compressional energy and that a study involving full wave solutions is required.Key PointsThe ion‐Bernstein (IB) mode is highly unstable to proton loss cones at MercuryThe IB mode can become highly compressional as it propagatesRay tracing of the IB mode predicts compression peaking the off equatorPeer Reviewedhttp://deepblue.lib.umich.edu/bitstream/2027.42/112180/1/jgra51808.pd

    Messenger Observations of Mercury's Bow Shock and Magnetopause

    Get PDF
    The MESSENGER spacecraft made the first of three flybys of Mercury on January 14.2008 (1). New observations of solar wind interaction with Mercury were made with MESSENGER'S Magnetometer (MAG) (2.3) and Energetic Particle and Plasma Spectrometer (EPPS) - composed of the Energetic Particle Spectrometer (EPS) and Fast Imaging Plasma Spectrometer (FIPS) (3,4). These MESSENGER observations show that Mercury's magnetosphere has a large-scale structure that is distinctly Earth-like, but it is immersed in a comet-like cloud of planetary ions [5]. Fig. 1 provides a schematic view of the coupled solar wind - magnetosphere - neutral atmosphere - solid planet system at Mercury

    ARTEMIS Science Objectives

    Get PDF
    NASA's two spacecraft ARTEMIS mission will address both heliospheric and planetary research questions, first while in orbit about the Earth with the Moon and subsequently while in orbit about the Moon. Heliospheric topics include the structure of the Earth's magnetotail; reconnection, particle acceleration, and turbulence in the Earth's magnetosphere, at the bow shock, and in the solar wind; and the formation and structure of the lunar wake. Planetary topics include the lunar exosphere and its relationship to the composition of the lunar surface, the effects of electric fields on dust in the exosphere, internal structure of the Moon, and the lunar crustal magnetic field. This paper describes the expected contributions of ARTEMIS to these baseline scientific objectives

    Work functions, ionization potentials, and in-between: Scaling relations based on the image charge model

    Full text link
    We revisit a model in which the ionization energy of a metal particle is associated with the work done by the image charge force in moving the electron from infinity to a small cut-off distance just outside the surface. We show that this model can be compactly, and productively, employed to study the size dependence of electron removal energies over the range encompassing bulk surfaces, finite clusters, and individual atoms. It accounts in a straightforward manner for the empirically known correlation between the atomic ionization potential (IP) and the metal work function (WF), IP/WF\sim2. We formulate simple expressions for the model parameters, requiring only a single property (the atomic polarizability or the nearest neighbor distance) as input. Without any additional adjustable parameters, the model yields both the IP and the WF within \sim10% for all metallic elements, as well as matches the size evolution of the ionization potentials of finite metal clusters for a large fraction of the experimental data. The parametrization takes advantage of a remarkably constant numerical correlation between the nearest-neighbor distance in a crystal, the cube root of the atomic polarizability, and the image force cutoff length. The paper also includes an analytical derivation of the relation of the outer radius of a cluster of close-packed spheres to its geometric structure.Comment: Original submission: 8 pages with 7 figures incorporated in the text. Revised submission (added one more paragraph about alloy work functions): 18 double spaced pages + 8 separate figures. Accepted for publication in PR

    MESSENGER Observations of Large Flux Transfer Events at Mercury

    Get PDF
    Six flux transfer events (FTEs) were encountered during MESSENGER's first two flybys of Mercury (M1 and M2). For M1 the interplanetary magnetic field (IMF) was predominantly northward and four FTEs with durations of 1 to 6 s were observed in the magnetosheath following southward IMF turnings. The IMF was steadily southward during M2, and an FTE 4 s in duration was observed just inside the dawn magnetopause followed approx. 32 s later by a 7 s FTE in the magnetosheath. Flux rope models were fit to the magnetic field data to determine FTE dimensions and flux content. The largest FTE observed by MESSENGER had a diameter of approx. 1 R(sub M) (where R(sub M) is Mercury s radius), and its open magnetic field increased the fraction of the surface exposed to the solar wind by 10 - 20 percent and contributed up to approx. 30 kV to the cross-magnetospheric electric potential

    Multinational characterization of neurological phenotypes in patients hospitalized with COVID-19

    Get PDF
    Neurological complications worsen outcomes in COVID-19. To define the prevalence of neurological conditions among hospitalized patients with a positive SARS-CoV-2 reverse transcription polymerase chain reaction test in geographically diverse multinational populations during early pandemic, we used electronic health records (EHR) from 338 participating hospitals across 6 countries and 3 continents (January–September 2020) for a cross-sectional analysis. We assessed the frequency of International Classification of Disease code of neurological conditions by countries, healthcare systems, time before and after admission for COVID-19 and COVID-19 severity. Among 35,177 hospitalized patients with SARS-CoV-2 infection, there was an increase in the proportion with disorders of consciousness (5.8%, 95% confidence interval [CI] 3.7–7.8%, pFDR < 0.001) and unspecified disorders of the brain (8.1%, 5.7–10.5%, pFDR < 0.001) when compared to the pre-admission proportion. During hospitalization, the relative risk of disorders of consciousness (22%, 19–25%), cerebrovascular diseases (24%, 13–35%), nontraumatic intracranial hemorrhage (34%, 20–50%), encephalitis and/or myelitis (37%, 17–60%) and myopathy (72%, 67–77%) were higher for patients with severe COVID-19 when compared to those who never experienced severe COVID-19. Leveraging a multinational network to capture standardized EHR data, we highlighted the increased prevalence of central and peripheral neurological phenotypes in patients hospitalized with COVID-19, particularly among those with severe disease
    corecore