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9 Abstract.

10 Six flux transfer events (FTEs) were encountered during MESSENGER’s first two

11 flybys of Mercury (M1 and M2). For M1 the interplanetary magnetic field (IMF) was

12 predominantly northward and four FTEs with durations of 1 to 6 s were observed in the

13 magnetosheath following southward IMF turnings. The IMF was steadily southward

14 during M2, and an FTE 4 s in duration was observed just inside the dawn

15 magnetopause followed — 32 s later by a 7 s FTE in the magnetosheath. Flux rope

16 models were fit to the magnetic field data to determine FTE dimensions and flux

17 content. The largest FTE observed by MESSENGER had a diameter of — 1 RM (where

18 RM is Mercury’s radius), and its open magnetic field increased the fraction of the

19 surface exposed to the solar wind by 10 - 20 percent and contributed up to — 30 kV to

20	 the cross-magnetospheric electric potential.

21

22

23	 1. Introduction
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24	 The MErcury Surface, Space ENvironment, GEochemistry, and Ranging

25 (MESSENGER) flyby measurements show that Mercury’s magnetic field is largely

26 dipolar, has a moment closely aligned with the planet’s rotation axis with the same

27 polarity as at Earth, and has not significantly changed since its discovery by Mariner 10

28	 in 1974 and 1975 [Anderson et al., 2008, 2009; Alexeev et al., 2009]. The interaction of

29 the planetary magnetic field with the solar wind is governed primarily by the

30 interplanetary magnetic field (IMF) orientation. For the first MESSENGER Mercury

31 flyby (M1) on14 January 2008 the average IMF upstream of the outbound bow shock

32 was northward with (BX, BY , BZ) _ (-12.9, 4.71, 10.29 nT) in Mercury solar orbital

33 (MSO). In these coordinates XMSO is directed from the center of the planet toward the

34 Sun, ZMSO is normal to Mercury’s orbital plane and positive toward the north celestial

35 pole, and YMSO completes this right-handed orthogonal system. In contrast, for

36 MESSENGER’s second Mercury flyby (M2) on 6 October 2008, the mean upstream

37	 IMF was southward, (BX, BY , BZ) _ (-15.21, 8.40, -8.51 nT).

38	 Magnetic reconnection occurs at the dayside magnetopause when there is a

39 component of the IMF anti-parallel to the subsolar magnetospheric magnetic field.

40 When such reconnection is localized or non-steady at Earth, discrete magnetic flux

41 tubes with diameters of ~ 1 RE (1 RE _ 6400 km), termed flux transfer events (FTEs),

42 become connected to the IMF and pulled from the dayside magnetosphere by the anti-

43 sunward flow in the magnetosheath and added to the tail [Russell and Elphic, 1978].

44 FTEs created by reconnection occurring simultaneously at multiple dayside X-lines are

45 identified by their flux rope structure [Le and Fu, 1985]. FTEs not possessing flux rope

46 topology may be produced by short duration pulses of reconnection [ Southwood et al.,
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47	 1988; Scholer et al., 1988]. They are identified primarily by the characteristic manner

48 in which magnetosheath and magnetospheric magnetic fields drape about these flux

49 tubes as they move tailward.

50	 Some FTEs were found and analyzed in the Mariner 10 flyby observations [ Russell

51 and Walker, 1985], and initial examinations of the MESSENGER magnetic field

52 measurements also noted the presence of FTEs [Slavin et al., 2008; 2009a]. Here we

53 report a comprehensive survey of the MESSENGER magnetic field data for the

54 occurrence of FTEs. From definitions developed for Earth’s magnetosphere [e.g.,

55	 Wang et al., 2005], six FTEs were identified during the two flybys with all, save one,

56 strongly resembling flux ropes. Unfortunately, MESSENER does not make the high

57 time resolution plasma moment measurements necessary to analyze these FTEs using

58 the Grad-Shafranov reconstruction technique [ Zhang et al., 2008; Eriksson et al.,

59 2009]. However, we use a well validated flux rope model [Lepping et al., 1990, 2006]

60 to infer their dimensions, orientation, the proximity of the spacecraft path to the rope’s

61	 central axis, and their axial magnetic flux content. In contrast with the Mariner 10

62 findings, the MESSENGER results indicate that some FTEs at Mercury carry as much

63 flux as typical FTEs at Earth. It is concluded that these large FTE’s will have

64 significant impacts on the cross-magnetospheric electric potential drop and the flux of

65 solar wind ions reaching the surface and sputtering neutrals into Mercury’s exosphere.

66

67 2. MESSENGER Flux Transfer Events Observations

68	 Near the magnetopause, FTEs are identified by variations of the magnetic field in a

69 local boundary-normal coordinate system [ Russell and Elphic, 1978]. We present data
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70 in L-M-N coordinates, where BN is directed radially outward normal (based upon the

71	 Slavin et al. [2009a] model) to the closest point on the magnetopause, BL is

72 perpendicular to BN and anti-parallel to the planetary magnetic dipole, and BM

73 completes the right-handed system.

74	 We identify two M2 FTE bipolar BN signatures in Figure 1, the first lasting 3.5 s at

75 08:48:58 UTC and the second lasting 7.1 s at 08:49:30. The sense of the bipolar BN

76 variation for both FTEs is consistent with reconnection occurring at a tilted X-line

77 passing near the subsolar point and moving northward over MESSENGER. The

78	 decrease in magnetic field intensity within the 08:48:58 event is very similar to “crater-

79 type” FTEs at Earth. The crater feature is thought to correspond to a “swirl” of plasma

80 with a high ratio of magnetic to kinetic pressure caused by ongoing reconnection [ Owen

81	 et al., 2008]. The second event at 08:49:30 is the longest duration FTE found in the M1

82 and M2 data and exhibits a strong core magnetic field and helical topology, evident in

83 BL and BM, typical of a quasi-force-free flux rope. In this event the core magnetic field

84 exceeds the surrounding magnetosheath field by a factor of ~ 2.5 .

85	 Another long-duration FTE lasting 6 s was observed during M1 inbound near the

86 dusk flank. Figure 2 shows data both for this event on the left and for the 7-s FTE

87 discussed above on the right, here presented in MSO coordinates. Vertical dashed lines

88 mark the beginning and end points of each event estimated from the field rotational

89 signature. In each case the flux-rope-like variation in the magnetic field is evident in the

90 rotational signature surrounding an enhancement in the total field. The magnetic field

91 magnitude and rotation in Figure 2a are nearly symmetric relative to the time of

92 maximum field intensity, whereas the FTE in Figure 2b has a narrow, somewhat
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93 asymmetric field magnitude enhancement relative to the field rotation. Both of the

94 FTEs are associated with an IMF BZ < 0 in the magnetosheath, as occurred

95 intermittently inbound for M1, but nearly continuously inbound and outbound for M2.

96 Our examination of the MESSENGER magnetic field data revealed three additional

97 magnetosheath FTEs during M1, which are displayed in Figure 3. These FTEs were

98 also associated with magnetosheath BZ < 0 although there is brief (less than 1 min)

99 period of northward magnetic field separating the FTE in Figure 3c from the end of the

100 earlier interval of southward IMF. These FTEs were shorter, lasting ~1 s to 3 s, but they

101	 all have magnetic field perturbations similar to the longer-duration events.

102

103 3. Force-Free Modeling of Flux Transfer Events

104	 We investigate the structure of the FTEs observed by MESSNEGER in Mercury’s

105 magnetosheath by modeling them as force-free flux ropes [ Lepping et al., 1990].

106 Originally developed for interplanetary magnetic clouds, this procedure has also been

107 applied to a variety of flux ropes in Earth’s magnetotail. The model is based on the

108 assumption that the flux rope current density (J) and magnetic field (B) are related by a

109	 constant of proportionality, a;

110	 J = α B
	

(1)

111	 The structure is assumed to be cylindrically symmetric, with the pitch angle of the

112 helical field lines increasing with distance from the axis of the rope. The field at the

113	 center of the rope is aligned with its central axis, becoming perpendicular at the outer

114 boundary of the rope. An analytical approximation for this field configuration is the

115	 static, constant-a, force-free, cylindrically symmetric configuration, a solution to
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116	 O2 B = - a2 B
	

(2)

117	 The Lundquist [1950] Bessel function solution is:

118	 Bz(r) = B0 J0(ar), B (r) = B0 H J1 (ar), and Br = 0
	

(3)

119 where B0 is the peak axial field intensity and H = ±1 is the rope’s handedness.

120	 Using the method of Lepping et al. [1990, 2006], we fit Eq. (3) to the measured

121 magnetic field (in MSO coordinates) for all of the flux rope events.The data are first

122 normalized, and then a variance analysis is applied to establish an approximate rope

123 coordinate system. We then perform a least-squares fit between the normalized,

124 observed magnetic field after transformation into this initial coordinate system, and Eq.

125	 (3). Given the orientation of the flux rope relative to the spacecraft trajectory, the radius

126 of the flux rope is inferred from the estimated magnetosheath plasma flow speed. A

127 flow speed of 250 km/s was assumed for the one near-magnetopause FTE and 400 km/s

128 for the other FTEs, on the basis of numerical simulations of solar wind flow about

129 Mercury’s magnetosphere for the flybys [Benna at al., 2009; Trávníčiek et al., 2009].

130	 Several parameters were calculated for each flux-rope fit. A "reduced chi” quality

131 parameter, Qx = x/(3N - n), was used to measure the quality of the fit, where x is the

132 variance of the data relative to the fit, N is the number of points considered in the

133	 analysis interval, and n = 5 is the number of parameters used in the fit. Note that Qx is

134 dimensionless since the magnetic field was normalized. A reduced Qx of less than 0.25

135	 is required before a fit is regarded as “acceptable” [see Lepping et al., 2006]. The

136 quality of the fit is also judged by the symmetry of the fitted field intensity. We define

137	 an asymmetry factor, ASF = |(1 – 2( t0/Δt)/(N-1))|, where t0 is the center time of the rope

138 and Δt is the sampling interval. An ASF of 0 is an ideal fit to a force-free cylindrical
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139 flux rope, and values over 0.5 are not acceptable. Ideally the field is purely azimuthal

140 (i.e., where ar = 2.4) at the flux rope boundary, but in practice the precise end-points

141	 are not always evident in the data. For this reason trial-fits are generally necessary, with

142 the best fit chosen on the basis of Qx and ASF. The flux rope parameters derived from

143	 the fits are B0 , the axial field intensity; H, the handedness (+/-1 for right/left hand); R0 ,

144 the radius of the flux rope; Y0, the closest approach distance of the spacecraft to the

145 rope’s axis; Y0/R0 , the “impact parameter;” BA and φA, the polar and longitude angles of

146	 the rope's axis, respectively; and t0 , the rope center time.

147	 The model fit to the M1 FTE observed at 18:36:20 is displayed in Figure 2a. The

148 best-fit model parameters are given in Table 1 (i.e. Event 3). The agreement between

149 the data and the flux rope model is excellent. The Qx and ASF parameters are small,

150 0.082 and 0.20, respectively. The inferred flux rope radius is 0.52 RM (where RM is

151	 Mercury’s radius), and B0 is 39 nT. The spacecraft closest approach distance was

152 halfway out from the central axis, Y0/R0 = 0.46. The polar and longitude angles are 70°

153 and 303°, respectively, indicating that the rope was highly inclined to the MSO X-Y

154 plane and close to the upstream IMF direction.

155	 The model fit to the M2 high-field-intensity event at 08:48:30 observed just

156 upstream of the magnetopause is shown in Figure 2b and parameters listed in Table 1

157 (as event 5). Although the best-fit model does not reproduce the extreme peak field

158 intensity, the angular variations in the magnetic field direction are well matched. The fit

159 quality factors are acceptable, with Qx = 0.140 and ASF = 0.17. The inferred radius of

160 the flux rope is 0.49 RM, and the maximum axial magnetic field intensity is 108 nT. The

161	 spacecraft closest approach distance to the central axis of the flux rope was again about
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162 halfway out from the axis with Y0/R0 = 0.52. This flux rope had a latitude angle of θA =

163	 58°, while the longitudinal orientation was sunward at φA = 355°. The fit results for the

164 three remaining magnetosheath FTEs are graphed in Figure 3, and their fit parameters

165	 are listed in Table 1.

166

167 4. Summary and Conclusions

168	 The MESSENGER FTEs are significantly longer in duration than the — 1-s

169 Mariner 10 FTEs identified and analyzed by Russell and Walker [1985]. Only two of

170 the six MESSENGER FTEs are less than 2 s in duration, while the other four have

171 durations of 3.4 to 7.1 s. The reason why the MESSENGER FTEs are larger is unclear,

172 but it may be due to differences in upstream solar wind conditions between the

173 MESSENGER and Mariner 10 flybys. The 32-s interval between the two M2 FTEs is

174 similar to the —30–40-s period large-amplitude magnetospheric compressional

175 perturbations reported by Anderson et al, [2009] and the — 30–60-s spacing between

176 the plasmoid and traveling compression regions in the tail found by Slavin et al.

177	 [2009a]. The comparability of these periods raises the possibility that the formation and

178 tailward motion of FTEs may produce global compressions of the forward

179 magnetosphere and episodes of reconnection in the tail.

180	 Our modeling indicates that the MESSENGER FTEs can be represented as quasi-

181 force-free flux ropes. Their diameters and axial magnetic flux contents varied from D =

182 0.15 to 0.98 RM and Φ = 0.001 to 0.2 MWb. The largest of the FTEs observed by

183 MESSENGER have diameters that exceed by a factor of —2 the mean thickness of the

184 magnetosheath at the local time when they were observed. However, it must be noted
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185 that MESSENGER does not make the high time resolution plasma moment

186 measurements that would be required to infer FTE flattening using GS reconstruction

187 techniques. Given their great relative size, these FTEs could be significantly deformed

188 by their interaction with the magnetosheath and the shape and location of

189 magnetopause and bow shock locally altered. By comparison, the typical FTE observed

190 at the Earth has a diameter of — 1 Earth radius (RE) which is only —30% of the mean

191	 subsolar magnetosheath thickness at Earth. Furthermore, the axial magnetic flux of the

192 largest MESSENGER FTEs approaches that of FTEs observed at Earth [Zhang et al.,

193	 2008; and references therein]. This result suggests that FTE size may be controlled not

194 by the dimensions of the magnetosphere, but by the plasma kinetic properties of the

195 solar wind or the reconnection process as has been previously suggested [Kuznetsova

196 and Zeleny, 1986]. The variation in tail lobe magnetic flux from relatively quiescent,

197 northward IMF, to more active, southward IMF intervals at Earth and Mercury are

198 estimated to be — 500 to 700 MWb [Huang et al., 2009] and 4 to 6 MWb [Alexeev et

199	 al., 2009], respectively. Hence, while a large FTE at Earth transports perhaps 0.1 % of

200 the quiet time lobe flux, the situation at Mercury is quite different with a large FTE

201 carrying — 5% of the total lobe flux. The transfer of this magnetic flux from the

202 dayside to the nightside magnetosphere will contribute an amount, Φ/ΔT where AT —

203 D/400 km/s is the time scale for the flux change to the dawn-to-dusk magnetospheric

204 electric potential. The values range from — 1 kV for the smallest to — 30 kV for the

205 largest MESSENGER FTEs.

206	 The magnetic flux content of the FTEs observed by MESSENGER may also

207 have significant implications for solar wind access to the surface and, therefore, for the



208 variability in the sputtered component of Mercury’s exosphere. For IMF BX oriented

209 away from the Sun and BZ — -10 nT, i.e., conditions close to those during

210 MESSENGER’s second flyby, Sarantos et al. [2007] estimated that 12% of the

211 northern hemisphere is magnetically “open” and exposed to the solar wind. Magnetic

212 flux conservation indicates that a 0.2 MWb FTE will expose an additional — 10-20% of

213 the surface to solar wind impact. However, this newly open magnetic flux will be

214 concentrated in the cusp regions where most of the solar wind ion precipitation occurs

215	 [Sarantos et al., 2007]. For this reason FTEs may produce brief increases in solar wind

216 ion impact with amplitudes of many tens of percent relative to the mean cusp

217 precipitation rate and the rate at which neutrals are sputtered into Mercury’s exosphere.

218
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300
301	 Table 1. Flux Transfer Event Modeling Results

Event DOY Start Time

UTC

Duration

(s)

Qx ASF H* R0**

(RM)

|Y0/R0 | B0

(nT)

BA

(°)

OA

(°) (^^

Φ

(MWb)

1 014 18:32:24 0.97 0.101 0.12 L 0.078 0.53 20.9 -

53.9

254.9 0.0011

2 014 18:34:27 3.42 0.049 0.055 L 0.35 0.69 30.3 5.7 132.3 0.030

3 014 18:36:20 6.00 0.082 0.202 L 0.52 0.46 38.7 69.8 302.9 0.085

4 014 19:16:19 1.37 0.169 0.000 L 0.086 0.00 57.5 12.8 228.9 0.0035

5 280 08:49:25 7.09 0.140 0.169 R 0.49 0.52 108.2 58.0 354.8 0.22

302
303 * H is handedness: R for right-handed and L for left-handed.
304 ** V = 400 km/s is assumed for all cases except event 5, for which V = 250 km/s.
305

306
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307

309 Figure 1. MESSENGER magnetic field measurements across the M2 dawn

310 magnetopause in boundary normal coordinates.

311
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313 Figure 2. Magnetic field measurements in MSO coordinates for the largest FTEs

314 identified during (a) M1 and (b) M2. Force-free flux rope models fit to these events are

315 shown in red. Dashed vertical lines mark the selected beginning and end of the fitting

316 interval. Due to its location in the magnetosheath sunward of the dawn terminator, a

317 speed of 250 km/s is assumed for the M2 FTE.

318
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319

320 Figure 3. Magnetic field measurements of FTEs observed during M1 with constant- a

321 flux rope models shown in dark red.
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