10 research outputs found

    Threading plasmonic nanoparticle strings with light.

    Get PDF
    Nanomaterials find increasing application in communications, renewable energies, electronics and sensing. Because of its unsurpassed speed and highly tuneable interaction with matter, using light to guide the self-assembly of nanomaterials can open up novel technological frontiers. However, large-scale light-induced assembly remains challenging. Here we demonstrate an efficient route to nano-assembly through plasmon-induced laser threading of gold nanoparticle strings, producing conducting threads 12±2 nm wide. This precision is achieved because the nanoparticles are first chemically assembled into chains with rigidly controlled separations of 0.9 nm primed for re-sculpting. Laser-induced threading occurs on a large scale in water, tracked via a new optical resonance in the near-infrared corresponding to a hybrid chain/rod-like charge transfer plasmon. The nano-thread width depends on the chain mode resonances, the nanoparticle size, the chain length and the peak laser power, enabling nanometre-scale tuning of the optical and conducting properties of such nanomaterials.This is the published version of the article. It was published by NPG in Nature Communications and can be found on the journal website here: http://www.nature.com/ncomms/2014/140728/ncomms5568/full/ncomms5568.html

    Multifunctional supramolecular polymer networks as next-generation consolidants for archaeological wood conservation.

    Get PDF
    The preservation of our cultural heritage is of great importance to future generations. Despite this, significant problems have arisen with the conservation of waterlogged wooden artifacts. Three major issues facing conservators are structural instability on drying, biological degradation, and chemical degradation on account of Fe(3+)-catalyzed production of sulfuric and oxalic acid in the waterlogged timbers. Currently, no conservation treatment exists that effectively addresses all three issues simultaneously. A new conservation treatment is reported here based on a supramolecular polymer network constructed from natural polymers with dynamic cross-linking formed by a combination of both host-guest complexation and a strong siderophore pendant from a polymer backbone. Consequently, the proposed consolidant has the ability to chelate and trap iron while enhancing structural stability. The incorporation of antibacterial moieties through a dynamic covalent linkage into the network provides the material with improved biological resistance. Exploiting an environmentally compatible natural material with completely reversible chemistries is a safer, greener alternative to current strategies and may extend the lifetime of many culturally relevant waterlogged artifacts around the world.This is the author's accepted manuscript. The final version is available from PNAS at http://www.pnas.org/content/111/50/17743.long

    Theory and practice: bulk synthesis of C3B and its H2- and Li-storage capacity.

    Get PDF
    Previous theoretical studies of C3B have suggested that boron-doped graphite is a promising H2- and Li-storage material, with large maximum capacities. These characteristics could lead to exciting applications as a lightweight H2-storage material for automotive engines and as an anode in a new generation of batteries. However, for these applications to be realized a synthetic route to bulk C3B must be developed. Here we show the thermolysis of a single-source precursor (1,3-(BBr2)2C6H4) to produce graphitic C3B, thus allowing the characteristics of this elusive material to be tested for the first time. C3B was found to be compositionally uniform but turbostratically disordered. Contrary to theoretical expectations, the H2- and Li-storage capacities are lower than anticipated, results that can partially be explained by the disordered nature of the material. This work suggests that to model the properties of graphitic materials more realistically, the possibility of disorder must be considered.We thank the ERC (Advance Investigator awards for D.S.W., C.P.G.), the EPSRC (T.C.K., P.D.M., H.G., J.C.), and the Spanish Ministerio de Economia y Competitividad (under grants ENE2011-24-412 and IPT-2011-1553-420000). We thank John Bulmer for Raman spectroscopy and Keith Parmenter for glass blowing. We thank the Schlumberger Gould Research Centre for XPS analysis.This is the author accepted manuscript. The final version is available from Wiley via http://dx.doi.org/10.1002/anie.20141220

    Les traitements innovants du mélanome

    No full text
    PARIS-BIUP (751062107) / SudocSudocFranceF

    Temperature- and Voltage-Induced Ligand Rearrangement of a Dynamic Electroluminescent Metallopolymer

    No full text
    A dynamic-covalent metal-containing polymer was synthesized by the condensation of linear diamine and dialdehyde subcomponents around copper(I) templates in the presence of bidentate phosphine ligands. In solution, the red polymers undergo a sol-gel transition upon heating to form a yellow gel, a process that can be either reversible or irreversible depending on the solvent used. When fabricated into a light-emitting electrochemical cell (LEC), the polymer emits infrared light at low voltage. As the voltage is increased, a blue shift in the emission wavelength is observed until yellow light is emitted, a process which is gradually reversed over time upon lowering the voltage. The mechanism underlying these apparently disparate responses is deduced to be due to loss of the copper phosphine complex from the polymer

    Pricing Revolution: From Abstract Expressionism to Pop Art

    No full text
    corecore