2,827 research outputs found

    Seagrass can mitigate negative ocean acidification effects on calcifying algae

    Get PDF
    The ultimate effect that ocean acidification (OA) and warming will have on the physiology of calcifying algae is still largely uncertain. Responses depend on the complex interactions between seawater chemistry, global/local stressors and species-specific physiologies. There is a significant gap regarding the effect that metabolic interactions between coexisting species may have on local seawater chemistry and the concurrent effect of OA. Here, we manipulated CO2 and temperature to evaluate the physiological responses of two common photoautotrophs from shallow tropical marine coastal ecosystems in Brazil: the calcifying alga Halimeda cuneata, and the seagrass Halodule wrightii. We tested whether or not seagrass presence can influence the calcification rate of a widespread and abundant species of Halimeda under OA and warming. Our results demonstrate that under elevated CO2, the high photosynthetic rates of H. wrightii contribute to raise H. cuneata calcification more than two-fold and thus we suggest that H. cuneata populations coexisting with H. wrightii may have a higher resilience to OA conditions. This conclusion supports the more general hypothesis that, in coastal and shallow reef environments, the metabolic interactions between calcifying and non-calcifying organisms are instrumental in providing refuge against OA effects and increasing the resilience of the more OA-susceptible species.E.B. would like to thank the Coordenação de Aperfeiçoamento de Pessoas de Nível Superior (CAPES) for Masters funding. Funding for this project came from the Synergism grant (CNPq 407365/2013-3). We extend our thanks to the Brazil-based Projeto Coral Vivo and its sponsor PetroBras Ambiental for providing the Marine Mesocosm structure and experimental assistance.info:eu-repo/semantics/publishedVersio

    The Search for Invariance: Repeated Positive Testing Serves the Goals of Causal Learning

    Get PDF
    Positive testing is characteristic of exploratory behavior, yet it seems to be at odds with the aim of information seeking. After all, repeated demonstrations of one’s current hypothesis often produce the same evidence and fail to distinguish it from potential alternatives. Research on the development of scientific reasoning and adult rule learning have both documented and attempted to explain this behavior. The current chapter reviews this prior work and introduces a novel theoretical account—the Search for Invariance (SI) hypothesis—which suggests that producing multiple positive examples serves the goals of causal learning. This hypothesis draws on the interventionist framework of causal reasoning, which suggests that causal learners are concerned with the invariance of candidate hypotheses. In a probabilistic and interdependent causal world, our primary goal is to determine whether, and in what contexts, our causal hypotheses provide accurate foundations for inference and intervention—not to disconfirm their alternatives. By recognizing the central role of invariance in causal learning, the phenomenon of positive testing may be reinterpreted as a rational information-seeking strategy

    Exposure of neonatal rats to maternal cafeteria feeding during suckling alters hepatic gene expression and DNA methylation in the insulin signalling pathway

    Get PDF
    Nutrition in early life is a determinant of lifelong physiological and metabolic function. Diseases that are associated with ageing may, therefore, have their antecedents in maternal nutrition during pregnancy and lactation. Rat mothers were fed either a standard laboratory chow diet (C) or a cafeteria diet (O) based upon a varied panel of highly palatable human foods, during lactation. Their offspring were then weaned onto chow or cafeteria diet giving four groups of animals (CC, CO, OC, OO n=9-10). Livers were harvested 10 weeks post-weaning for assessment of gene and protein expression, and DNA methylation. Cafeteria feeding post-weaning impaired glucose tolerance and was associated with sex-specific altered mRNA expression of peroxisome proliferator activated receptor gamma (PPARg) and components of the insulin-signalling pathway (Irs2, Akt1 and IrB). Exposure to the cafeteria diet during the suckling period modified the later response to the dietary challenge. Post-weaning cafeteria feeding only down-regulated IrB when associated with cafeteria feeding during suckling (group OO, interaction of diet in weaning and lactation P=0.041). Responses to cafeteria diet during both phases of the experiment varied between males and females. Global DNA methylation was altered in the liver following cafeteria feeding in the post-weaning period, in males but not females. Methylation of the IrB promoter was increased in group OC, but not OO (P=0.036). The findings of this study add to a growing evidence base that suggests tissue function across the lifespan a product of cumulative modifications to the epigenome and transcriptome, which may be both tissue and sex-specific

    Gene expression and matrix turnover in overused and damaged tendons

    Get PDF
    Chronic, painful conditions affecting tendons, frequently known as tendinopathy, are very common types of sporting injury. The tendon extracellular matrix is substantially altered in tendinopathy, and these changes are thought to precede and underlie the clinical condition. The tendon cell response to repeated minor injuries or “overuse” is thought to be a major factor in the development of tendinopathy. Changes in matrix turnover may also be effected by the cellular response to physical load, altering the balance of matrix turnover and changing the structure and composition of the tendon. Matrix turnover is relatively high in tendons exposed to high mechanical demands, such as the supraspinatus and Achilles, and this is thought to represent either a repair or tissue maintenance function. Metalloproteinases are a large family of enzymes capable of degrading all of the tendon matrix components, and these are thought to play a major role in the degradation of matrix during development, adaptation and repair. It is proposed that some metalloproteinase enzymes are required for the health of the tendon, and others may be damaging, leading to degeneration of the tissue. Further research is required to investigate how these enzyme activities are regulated in tendon and altered in tendinopathy. A profile of all the metalloproteinases expressed and active in healthy and degenerate tendon is required and may lead to the development of new drug therapies for these common and debilitating sports injuries

    Performance of non-uniform tidal turbine arrays in uniform flow

    Get PDF
    Theoretical models suggest that in order to maximise their collective power out put, tidal turbines should be arranged in a single cross-stream row and optimally spaced to exploit local blockage effects. However, because it is assumed that the turbines within these arrays are identical, such models do not consider the possibility of enhanced power production through the exploitation of spanwise variations in local blockage and resistance. In this paper, we use depth-averaged numerical simulations to investigate whether the performance of a tidal turbine array can be further enhanced by varying solely the local blockage, solely the local resistance, or both local blockage and resistance together, across the array width. Our results suggest that for an initially uniform flow field, the optimal tidal turbine array is also uniform, that is to say that it comprises turbines of equal size, spacing, and resistance. This finding is encouraging because it is more cost-effective and much simpler to design each turbine to be the same and to operate in the same way. Together with earlier findings, these results also suggest a more general, and perhaps unsurprising, conclusion that tidal turbine arrays perform best when designed to match site-specific natural flow conditions

    Expression profile of the N-myc Downstream Regulated Gene 2 (NDRG2) in human cancers with focus on breast cancer

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Several studies have shown that <it>NDRG2 </it>mRNA is down-regulated or undetectable in various human cancers and cancer cell-lines. Although the function of <it>NDRG2 </it>is currently unknown, high <it>NDRG2 </it>expression correlates with improved prognosis in high-grade gliomas, gastric cancer and hepatocellular carcinomas. Furthermore, <it>in vitro </it>studies have revealed that over-expression of NDRG2 in cell-lines causes a significant reduction in their growth. The aim of this study was to examine levels of <it>NDRG2 </it>mRNA in several human cancers, with focus on breast cancer, by examining affected and normal tissue.</p> <p>Methods</p> <p>By labelling a human Cancer Profiling Array with a radioactive probe against <it>NDRG2</it>, we evaluated the level of <it>NDRG2 </it>mRNA in 154 paired normal and tumor samples encompassing 19 different human cancers. Furthermore, we used quantitative real-time RT-PCR to quantify the levels of <it>NDRG2 </it>and <it>MYC </it>mRNA in thyroid gland cancer and breast cancer, using a distinct set of normal and tumor samples.</p> <p>Results</p> <p>From the Cancer Profiling Array, we saw that the level of <it>NDRG2 </it>mRNA was reduced by at least 2-fold in almost a third of the tumor samples, compared to the normal counterpart, and we observed a marked decreased level in colon, cervix, thyroid gland and testis. However, a Benjamini-Hochberg correction showed that none of the tissues showed a significant reduction in <it>NDRG2 </it>mRNA expression in tumor tissue compared to normal tissue. Using quantitative RT-PCR, we observed a significant reduction in the level of <it>NDRG2 </it>mRNA in a distinct set of tumor samples from both thyroid gland cancer (p = 0.02) and breast cancer (p = 0.004), compared with normal tissue. <it>MYC </it>mRNA was not significantly altered in breast cancer or in thyroid gland cancer, compared with normal tissue. In thyroid gland, no correlation was found between <it>MYC </it>and <it>NDRG2 </it>mRNA levels, but in breast tissue we found a weakly significant correlation with a positive r-value in both normal and tumor tissues, suggesting that <it>MYC </it>and <it>NDRG2 </it>mRNA are regulated together.</p> <p>Conclusion</p> <p>Expression of <it>NDRG2 </it>mRNA is reduced in many different human cancers. Using quantitative RT-PCR, we have verified a reduction in thyroid cancer and shown, for the first time, that <it>NDRG2 </it>mRNA is statistically significantly down-regulated in breast cancer. Furthermore, our observations indicate that other tissues such as cervix and testis can have lower levels of <it>NDRG2 </it>mRNA in tumor tissue compared to normal tissue.</p

    Systematic review and meta-analysis of the diagnostic accuracy of ultrasonography for deep vein thrombosis

    Get PDF
    Background Ultrasound (US) has largely replaced contrast venography as the definitive diagnostic test for deep vein thrombosis (DVT). We aimed to derive a definitive estimate of the diagnostic accuracy of US for clinically suspected DVT and identify study-level factors that might predict accuracy. Methods We undertook a systematic review, meta-analysis and meta-regression of diagnostic cohort studies that compared US to contrast venography in patients with suspected DVT. We searched Medline, EMBASE, CINAHL, Web of Science, Cochrane Database of Systematic Reviews, Cochrane Controlled Trials Register, Database of Reviews of Effectiveness, the ACP Journal Club, and citation lists (1966 to April 2004). Random effects meta-analysis was used to derive pooled estimates of sensitivity and specificity. Random effects meta-regression was used to identify study-level covariates that predicted diagnostic performance. Results We identified 100 cohorts comparing US to venography in patients with suspected DVT. Overall sensitivity for proximal DVT (95% confidence interval) was 94.2% (93.2 to 95.0), for distal DVT was 63.5% (59.8 to 67.0), and specificity was 93.8% (93.1 to 94.4). Duplex US had pooled sensitivity of 96.5% (95.1 to 97.6) for proximal DVT, 71.2% (64.6 to 77.2) for distal DVT and specificity of 94.0% (92.8 to 95.1). Triplex US had pooled sensitivity of 96.4% (94.4 to 97.1%) for proximal DVT, 75.2% (67.7 to 81.6) for distal DVT and specificity of 94.3% (92.5 to 95.8). Compression US alone had pooled sensitivity of 93.8 % (92.0 to 95.3%) for proximal DVT, 56.8% (49.0 to 66.4) for distal DVT and specificity of 97.8% (97.0 to 98.4). Sensitivity was higher in more recently published studies and in cohorts with higher prevalence of DVT and more proximal DVT, and was lower in cohorts that reported interpretation by a radiologist. Specificity was higher in cohorts that excluded patients with previous DVT. No studies were identified that compared repeat US to venography in all patients. Repeat US appears to have a positive yield of 1.3%, with 89% of these being confirmed by venography. Conclusion Combined colour-doppler US techniques have optimal sensitivity, while compression US has optimal specificity for DVT. However, all estimates are subject to substantial unexplained heterogeneity. The role of repeat scanning is very uncertain and based upon limited data

    Search for Charged Higgs Bosons in e+e- Collisions at \sqrt{s} = 189 GeV

    Full text link
    A search for pair-produced charged Higgs bosons is performed with the L3 detector at LEP using data collected at a centre-of-mass energy of 188.6 GeV, corresponding to an integrated luminosity of 176.4 pb^-1. Higgs decays into a charm and a strange quark or into a tau lepton and its associated neutrino are considered. The observed events are consistent with the expectations from Standard Model background processes. A lower limit of 65.5 GeV on the charged Higgs mass is derived at 95 % confidence level, independent of the decay branching ratio Br(H^{+/-} -> tau nu)

    Expression of NDRG2 is down-regulated in high-risk adenomas and colorectal carcinoma

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>It has recently been shown that <it>NDRG2 </it>mRNA is down-regulated or undetectable in several human cancers and cancer cell-lines. Although the function of NDRG2 is unknown, high <it>NDRG2 </it>expression correlates with improved prognosis in high-grade gliomas. The aim of this study has been to examine <it>NDRG2 </it>mRNA expression in colon cancer. By examining affected and normal tissue from individuals with colorectal adenomas and carcinomas, as well as in healthy individuals, we aim to determine whether and at which stages <it>NDRG2 </it>down-regulation occurs during colonic carcinogenesis.</p> <p>Methods</p> <p>Using quantitative RT-PCR, we have determined the mRNA levels for <it>NDRG2 </it>in low-risk (n = 15) and high-risk adenomas (n = 57), colorectal carcinomas (n = 50) and corresponding normal tissue, as well as control tissue from healthy individuals (n = 15). <it>NDRG2 </it>levels were normalised to <it>β-actin</it>.</p> <p>Results</p> <p><it>NDRG2 </it>mRNA levels were lower in colorectal carcinomas compared to normal tissue from the control group (p < 0.001). When comparing adenomas/carcinomas with adjacent normal tissue from the same individual, <it>NDRG2 </it>expression levels were significantly reduced in both high-risk adenoma (p < 0.001) and in colorectal carcinoma (p < 0.001). There was a trend for <it>NDRG2 </it>levels to decrease with increasing Dukes' stage (p < 0.05).</p> <p>Conclusion</p> <p>Our results demonstrate that expression of <it>NDRG2 </it>is down-regulated at a late stage during colorectal carcinogensis. Future studies are needed to address whether <it>NDRG2 </it>down-regulation is a cause or consequence of the progression of colorectal adenomas to carcinoma.</p
    corecore