798 research outputs found
Optical thickness as related to pollutant episodes and the concentration of visibility degrading pollutants
A network of six sun photometers was placed in the central and northeast United States during the months of July through October, 1931. The objective of the program was to obtain measurements of atmospheric turbidity which can be related to the concentration of visibility-degrading pollutants in the atmosphere. These measurements serve as ground truth for a program to develop remote sensing techniques for measuring the vertically integrated aerosol concentrations in pollution episodes. The sun photometers measure the direct solar radiation in four passbands: 380 nm, 500 nm, 875 nm and 940 nm. The first three passbands will be used for measuring the aerosol optical depth and the last for measuring precipitable water
A rigorous approach to the magnetic response in disordered systems
This paper is a part of an ongoing study on the diamagnetic behavior of a
3-dimensional quantum gas of non-interacting charged particles subjected to an
external uniform magnetic field together with a random electric potential. We
prove the existence of an almost-sure non-random thermodynamic limit for the
grand-canonical pressure, magnetization and zero- field orbital magnetic
susceptibility. We also give an explicit formulation of these thermodynamic
limits. Our results cover a wide class of physically relevant random potentials
which model not only crystalline disordered solids, but also amorphous solids.Comment: 35 pages. Revised version. Accepted for publication in RM
Usefulness of routine preoperative testing in a developing country: a prospective study
Introduction: The assessment of anesthetic risks is an essential component of preoperative evaluation. In developing world, preanesthesia evaluation may be challenging because patient's medical history and records are scare, and language barrier limits physical examination. Our objective was to evaluate the impact of routine preoperative testing in a low-resources setting. Methods: Prospective observational study performed in a French forward surgical unit in Abidjan, Ivory Coast. 201 patients who were scheduled for non urgent surgery were screened with routine laboratory exams during preoperative evaluation. Changes in surgery were assessed (delayed or scheduled). Results: Abnormal hemoglobin findings were reported in 35% of patients, abnormal WBC count in 11,1% of patients, abnormal platelets in 15,3% of patients. Positive HIV results were found in 8,3% of cases. Routine tests represented 43,6% of changes causes. Conclusion: Our study showed that in a developing country, routine preoperative tests showed abnormal results up to 35% of cases, and represented 43,6% of delayed surgery causes. The rate of tests leading to management changes varied widely, from 0% to 8,3%. These results suggested that selected tests would be useful to diagnose diseases that required treatment before non urgent surgery. However, larger studies are needeed to evaluate the cost/benefit ratio and the clinical impact of such a strategy
Recommended from our members
Vitamin D Levels in Patients with Colorectal Cancer and Matched Household Members.
BackgroundVitamin D levels, as measured by 25-hydroxyvitamin-D [25(OH) D], are inversely related to the risk of developing colorectal cancer (CRC). Given shared demographic and lifestyle factors among members of the same household, we sought to examine vitamin D levels and associated lifestyle factors in household members of CRC patients.MethodsThirty patients with pathologically confirmed CRC were enrolled prior to oncologic therapy along with unrelated household members who were matched for age (+/- 5 years) and race. In addition to serum blood draws for 25(OH)D levels at baseline and six-month follow-up, questionnaires collected gender, vitamin use, body mass index, family history of CRC, race, dietary vitamin D, UV exposure, and exercise.ResultsMedian serum 25(OH) D levels were 26.8 ng/mL for CRC patients versus 27.3 for household members (P=0.89). Vitamin-D associated factors such as dietary vitamin D intake, UV exposure, gender, multivitamin use, vitamin D supplement use, and family history of CRC were not significantly different between CRC patients and paired household members (P>0.05). Household members were more likely than CRC patients to be overweight and to exercise more.ConclusionsVitamin D levels and many associated lifestyle factors were not significantly different between CRC patients and unrelated paired household members. Given comparable vitamin D levels, further investigation into whether age-matched household members of CRC patients may be at increased risk for CRC is warranted
Forage Maceration on a Self-Propelled Mower: Effect of Windrow Deposition and Inversion
Forage maceration is an intensive conditioning technique applied at mowing with high speed rolls. Maceration has been observed to enhance the field wilting rate, produce a more efficient silage fermentation and accelerate ruminal degradation. An important technical hurdle has been to scale up maceration for wide mowers without reducing capacity. The paper descibes a three-roll maceration unit that was integrated in a self-propelled 4.2 m wide mower. A capacity of 2.75 ha/h and throughputs up to 14 t DM (dry matter)/h or 64 t WM (wet matter)/h were achieved in alfalfa and timothy. Compared to a commercial mower-conditioner, the macerator increased field drying rates by 25 to 35%. A deposition conveyor was judged unnecessary as it did not reduce losses and did not improve the drying rate. Maceration followed by inversion could save one field drying day out of three traditionally needed for haymaking
Matter-wave laser Interferometric Gravitation Antenna (MIGA): New perspectives for fundamental physics and geosciences
The MIGA project aims at demonstrating precision measurements of gravity with
cold atom sensors in a large scale instrument and at studying the associated
applications in geosciences and fundamental physics. The first stage of the
project (2013-2018) will consist in building a 300-meter long optical cavity to
interrogate atom interferometers and will be based at the low noise underground
laboratory LSBB in Rustrel, France. The second stage of the project (2018-2023)
will be dedicated to science runs and data analyses in order to probe the
spatio-temporal structure of the local gravity field of the LSBB region, a site
of high hydrological interest. MIGA will also assess future potential
applications of atom interferometry to gravitational wave detection in the
frequency band Hz hardly covered by future long baseline optical
interferometers. This paper presents the main objectives of the project, the
status of the construction of the instrument and the motivation for the
applications of MIGA in geosciences. Important results on new atom
interferometry techniques developed at SYRTE in the context of MIGA and paving
the way to precision gravity measurements are also reported.Comment: Proceedings of the 50th Rencontres de Moriond "100 years after GR",
La Thuile (Italy), 21-28 March 2015 - 10 pages, 5 figures, 23 references
version2: added references, corrected typo
SST-GATE: A dual mirror telescope for the Cherenkov Telescope Array
The Cherenkov Telescope Array (CTA) will be the world's first open
observatory for very high energy gamma-rays. Around a hundred telescopes of
different sizes will be used to detect the Cherenkov light that results from
gamma-ray induced air showers in the atmosphere. Amongst them, a large number
of Small Size Telescopes (SST), with a diameter of about 4 m, will assure an
unprecedented coverage of the high energy end of the electromagnetic spectrum
(above ~1TeV to beyond 100 TeV) and will open up a new window on the
non-thermal sky. Several concepts for the SST design are currently being
investigated with the aim of combining a large field of view (~9 degrees) with
a good resolution of the shower images, as well as minimizing costs. These
include a Davies-Cotton configuration with a Geiger-mode avalanche photodiode
(GAPD) based camera, as pioneered by FACT, and a novel and as yet untested
design based on the Schwarzschild-Couder configuration, which uses a secondary
mirror to reduce the plate-scale and to allow for a wide field of view with a
light-weight camera, e.g. using GAPDs or multi-anode photomultipliers. One
objective of the GATE (Gamma-ray Telescope Elements) programme is to build one
of the first Schwarzschild-Couder prototypes and to evaluate its performance.
The construction of the SST-GATE prototype on the campus of the Paris
Observatory in Meudon is under way. We report on the current status of the
project and provide details of the opto-mechanical design of the prototype, the
development of its control software, and simulations of its expected
performance.Comment: In Proceedings of the 33rd International Cosmic Ray Conference
(ICRC2013), Rio de Janeiro (Brazil). All CTA contributions at arXiv:1307.223
Modeling sea-salt aerosols in the atmosphere: 2. Atmospheric concentrations and fluxes
Atmospheric sea-salt aerosol concentrations are studied using both long-term observations and model simulations of Na+ at seven stations around the globe. Good agreement is achieved between observations and model predictions in the northern hemisphere. A stronger seasonal variation occurs in the high-latitude North Atlantic than in regions close to the equator and in high-latitude southern hemisphere. Generally, concentrations are higher for both boreal and austral winters. With the model, the production flux and removal flux at the atmosphere-ocean interface was calculated and used to estimate the global sea-salt budget. The flux also shows seasonal variation similar to that of sea-salt concentration. Depending on the geographic location, the model predicts that dry deposition accounts for 60â70% of the total sea-salt removed from the atmosphere while in-cloud and below-cloud precipitation scavenging accounts for about 1% and 28â39% of the remainder, respectively. The total amount of sea-salt aerosols emitted from the world oceans to the atmosphere is estimated to be in the vicinity of 1.17Ă1016 g yrâ1. Approximately 99% of the sea-salt aerosol mass generated by wind falls back to the sea with about 1â2% remaining in the atmosphere to be exported from the original grid square (300Ă300 km). Only a small portion of that exported (âŒ4%) is associated with submicron particles that are likely to undergo long-range transport
MODELING OF HYDROTHERMAL FLUID CIRCULATION AS A TOOL FOR VOLCANIC HAZARD ASSESSMENT
Monitoring of geophysical and geochemical observÂŹables at the surface plays a main role in the underÂŹstanding ofâand the hazard evaluation ofâ active volcanoes. Measurable changes in these parameters should occur when a volcano approches eruptive conÂŹditions. Hydrothermal activity is commonly studied as an efficient carrier of signals from the magmatic system. As the magmatic system evolves, the amount, temperature, and composition of magmatic fluids that feed the hydrothermal system change, in turn affecting the parameters that are monitored at the surface. Modeling of hydrothermal circulation, as shown in the past, may cause measurable gravity changes and ground deformation. In this work, we extend our previous studies and increase the number of observable parameters to include gas temperature, the rate of diffuse degassing, the extent of the degassing area, and electrical conductivity. The possibility of nonmagmatic disturbance needs to be carefully addressed to ensure a proper estimate of volcanic hazard
Rigorous investigation of the reduced density matrix for the ideal Bose gas in harmonic traps by a loop-gas-like approach
In this paper, we rigorously investigate the reduced density matrix (RDM)
associated to the ideal Bose gas in harmonic traps. We present a method based
on a sum-decomposition of the RDM allowing to treat not only the isotropic
trap, but also general anisotropic traps. When focusing on the isotropic trap,
the method is analogous to the loop-gas approach developed by W.J. Mullin in
[38]. Turning to the case of anisotropic traps, we examine the RDM for some
anisotropic trap models corresponding to some quasi-1D and quasi-2D regimes.
For such models, we bring out an additional contribution in the local density
of particles which arises from the mesoscopic loops. The close connection with
the occurrence of generalized-BEC is discussed. Our loop-gas-like approach
provides relevant information which can help guide numerical investigations on
highly anisotropic systems based on the Path Integral Monte Carlo (PIMC)
method.Comment: v3: Minor modifications of v2. v2: Major modifications: the former
version (v1) has been completely rewritten. New results concerning the
anisotropic traps and generalized Bose-Einstein condensation have been added.
The connection with the loop-gas approach is further discussed. 40 page
- âŠ