217 research outputs found
The Young-Laplace equation for a solid-liquid interface
The application of the Young-Laplace equation to a solid-liquid interface is
considered. Computer simulations show that the pressure inside a solid cluster
of hard spheres is smaller than the external pressure of the liquid (both for
small and large clusters). That would suggest a negative value for the
interfacial free energy. We show that in a Gibbsian description of the
thermodynamics of a curved solid-liquid interface in equilibrium, the choice of
the thermodynamic (rather than mechanical) pressure is required, as suggested
by Tolman for the liquid-gas scenario. With this definition, the interfacial
free energy is positive, and the values obtained are in excellent agreement
with previous results from nucleation studies. Although for a curved
fluid-fluid interface there is no distinction between mechanical and thermal
pressures (for a sufficiently large inner phase), in the solid-liquid they do
not coincide, as hypothesized by Gibbs
Engineering the microstructure and magnetism of LaCoMnO thin films by tailoring oxygen stoichiometry
We report on the magnetic and structural properties of
ferromagnetic-insulating LaCoMnO thin films grown on top of (001) STO
substrates by means of RF sputtering technique. Careful structural analysis, by
using synchrotron X-ray diffraction, allows identifying two different
crystallographic orientations that are closely related to oxygen stoichiometry
and to the features (coercive fields and remanence) of the hysteresis loops.
Both Curie temperature and magnetic hysteresis turn out to be dependent on the
oxygen stoichiometry. In situ annealing conditions allow tailoring the oxygen
content of the films, therefore controlling their microstructure and magnetic
properties
Gate current analysis of AlGaN/GaN on silicon heterojunction transistors at the nanoscale
The gate leakage current of AlGaN/GaN (on silicon)high electron mobility transistor(HEMT) is investigated at the micro and nanoscale. The gate current dependence (25-310 °C) on the temperature is used to identify the potential conduction mechanisms, as trap assisted tunneling or field emission. The conductive atomic force microscopy investigation of the HEMT surface has revealed some correlation between the topography and the leakage current, which is analyzed in detail. The effect of introducing a thin dielectric in the gate is also discussed in the micro and the nanoscale
The effect of compressive strain on the Raman modes of the dry and hydrated BaCe0.8Y0.2O3 proton conductor
The BaCe0.8Y0.2O3-{\delta} proton conductor under hydration and under
compressive strain has been analyzed with high pressure Raman spectroscopy and
high pressure x-ray diffraction. The pressure dependent variation of the Ag and
B2g bending modes from the O-Ce-O unit is suppressed when the proton conductor
is hydrated, affecting directly the proton transfer by locally changing the
electron density of the oxygen ions. Compressive strain causes a hardening of
the Ce-O stretching bond. The activation barrier for proton conductivity is
raised, in line with recent findings using high pressure and high temperature
impedance spectroscopy. The increasing Raman frequency of the B1g and B3g modes
thus implies that the phonons become hardened and increase the vibration energy
in the a-c crystal plane upon compressive strain, whereas phonons are relaxed
in the b-axis, and thus reveal softening of the Ag and B2g modes. Lattice
toughening in the a-c crystal plane raises therefore a higher activation
barrier for proton transfer and thus anisotropic conductivity. The experimental
findings of the interaction of protons with the ceramic host lattice under
external strain may provide a general guideline for yet to develop epitaxial
strained proton conducting thin film systems with high proton mobility and low
activation energy
The economic case for prioritizing governance over financial incentives in REDD+
This article contributes to the ongoing debate on the role of public policies and financial incentives in Reducing Emissions from Deforestation and forest Degradation (REDD+). It argues that the subordination of policies to results-based payments for emission reductions causes severe economic inefficiencies affecting the opportunity cost, transaction cost and economic rent of the programme. Such problems can be addressed by establishing sound procedural, land and financial governance at the national level, before REDD+ economic incentives are delivered at scale. Consideration is given to each governance dimension, the entry points for policy intervention and the impact on costs. International support must consider the financial and political cost of governance reforms, and use a pay-for-results ethos based on output and outcome indicators. This can be done in the readiness process but only if the latter’s legal force, scope, magnitude and time horizon are adequately reconsidered. In sum, the paper provides ammunition for the institutionalist argument that UNFCCC Parties must prioritise governance reform between now and the entry into force of the new climate agreement in 2020, and specific recommendations about how this can be done: only by doing so will they create the basis for the programme’s financial sustainability
Rotavirus symptomatic infection among unvaccinated and vaccinated children in Valencia, Spain
BACKGROUND: Human group A rotavirus is the leading cause of severe acute gastroenteritis in young children worldwide. Immunization programs have reduced the disease burden in many countries. Vaccination coverage in the Autonomous Region of Valencia, Spain, is around 40%, as the rotavirus vaccine is not funded by the National Health System. Despite this low-medium vaccine coverage, rotavirus vaccination has substantially reduced hospitalizations due to rotavirus infection and hospital-related costs. However, there are very few studies evaluating symptomatic rotavirus infections not requiring hospitalization in vaccinated children. The objective of this study was to investigate symptomatic rotavirus infections among vaccinated children in the health area served by the Hospital ClĂnico Universitario of Valencia, Spain, from 2013 to 2015. METHODS: A total of 133 children younger than 5 years of age with rotavirus infection were studied. Demographic and epidemiological data were collected and informed consent from their caretakers obtained. Rotavirus infection was detected by immunological methods and G/P rotavirus genotypes were determined by RT-PCR, following standard procedures from the EuroRotaNet network. RESULTS: Forty infants (30.1%; 95% CI: 22.3-37.9) out of 133 were diagnosed with symptomatic rotavirus infection despite having been previously vaccinated, either with RotaTeq (85%) or with Rotarix (15%). Children fully vaccinated against rotavirus (24.8%), partially vaccinated (5.3%) and unvaccinated (69.9%) were found. The infecting genotypes showed high G-type diversity, although no significant differences were found between the G/P genotypes infecting vaccinated and unvaccinated children during the same time period. G9P[8], G12P[8] and G1P[8] were the most prevalent genotypes. Severity of gastroenteritis symptoms required 28 (66.6%) vaccinated and 67 (73.6%) unvaccinated children to be attended at the Emergency Room. CONCLUSION: Rotavirus vaccine efficacy in reducing the incidence of severe rotavirus infection has been well documented, but symptomatic rotavirus infection can sometimes occur in vaccinees
- …