1,357 research outputs found
Issues in front-end decision-making on projects
The importance of the front-end decision-making phase in projects is being increasingly recognized - the need to do the right project is on a par with doing the project right. This area is underrepresented in the literature, but there are a number of key themes that run throughout, identifying key issues or difficulties during this stage. This article looks at some of these themes and includes: the need for alignment between organizational strategy and the project concept; dealing with complexity, in particular the systemicity and interrelatedness within project decisions; consideration of the ambiguity implicit in all major projects; taking into account psychological and political biases within estimation of benefits and costs; consideration of the social geography and politics within decision-making groups; and preparation for the turbulence within the project environment, including the maintenance of strategic alignment
Preface and Acknowledgement
Background. The choice of treatment strategy for coronary artery disease is often based on: 1) anatomical information on stenosis locations, and 2) functional information on their haemodynamic relevance, e.g. myocardial deformation or perfusion. Inspecting a single fused image containing both anatomical and functional information, as opposed to viewing separate images side-by-side, facilitates this treatment choice. The aim of this study is to develop a novel cardiac fusion imaging technique to combine 3D+time echocardiography (3DE) (functional information) with coronary computed tomography angiography (CCTA) (anatomical information). Method. 3DE and CCTA data sets were obtained from 20 patients with suspected coronary artery disease. The coronary artery tree was segmented from the CCTA images. A semi-automatic fusion algorithm was developed to perform the following steps: The left ventricle (LV) 3D surfaces were segmented in the CCTA image and 3DE images and used to align the two data sets. The moving 3DE LV was then visualized along with the CCTA coronary arteries. Myocardial strain was estimated and visualized on the LV surface. Results. Preliminary fusion results from images of one patient have been obtained. The figure shows the CCTA coronary artery tree aligned with a) 3DE LV endocardium in end-systole, b) 3DE LV endocardium in end-diastole, and c) 3DE LV with colour-coded instantaneous longitudinal strain. Discussion. Preliminary results show that fusion of CCTA and 3DE images is feasible. However, the algorithm needs to be further developed to increase automation and include other functional parameters, such as myocardial perfusion. Moreover, a validation study to assess algorithm performance and diagnostic value in multiple patients will be performed. QC 20150122</p
Local biomass burning is a dominant cause of the observed precipitation reduction in southern Africa
Observations indicate a precipitation decline over large parts of southern Africa since the 1950s. Concurrently, atmospheric concentrations of greenhouse gases and aerosols have increased due to anthropogenic activities. Here we show that local black carbon and organic carbon aerosol emissions from biomass burning activities are a main cause of the observed decline in southern African dry season precipitation over the last century. Near the main biomass burning regions, global and regional modelling indicates precipitation decreases of 20–30%, with large spatial variability. Increasing global CO2 concentrations further contribute to precipitation reductions, somewhat less in magnitude but covering a larger area. Whereas precipitation changes from increased CO2 are driven by large-scale circulation changes, the increase in biomass burning aerosols causes local drying of the atmosphere. This study illustrates that reducing local biomass burning aerosol emissions may be a useful way to mitigate reduced rainfall in the region
Short-lived climate forcers from current shipping and petroleum activities in the Arctic
Emissions of short-lived climate forcers (SLCF) in the Arctic region are expected to increase, notably from shipping and petroleum extraction. We here discuss changes in atmospheric SLCF concentrations and resulting radiative forcing (RF) from present day shipping and petroleum activities in the Arctic. The three-dimensional chemistry transport OsloCTM2 and a state of the art radiative forcing model are used, based on a coherent dataset of present day Arctic emissions. We find that the net RF of SLCF of shipping in the Arctic region is negative, mainly due to the direct and indirect RF effects of sulphate emissions, while the net RF of SLCF of petroleum extraction is positive, mainly due to the effects of black carbon aerosols in the air and deposited on snow. Strong seasonal variations of the sensitivities to emissions are found. In terms of annual mean values we find that the Arctic sensitivities to SLCF is similar to global average sensitivities. One exception to this is the stronger snow/ice albedo effect from BC emissions
Recommendations for diagnosing effective radiative forcing from climate models for CMIP6
The usefulness of previous Coupled Model Intercomparison Project (CMIP) exercises has been hampered by a lack of radiative forcing information. This has made it difficult to understand reasons for differences between model responses. Effective radiative forcing (ERF) is easier to diagnose than traditional radiative forcing in global climate models (GCMs) and is more representative of the eventual temperature response. Here we examine the different methods of computing ERF in two GCMs. We find that ERF computed from a fixed sea-surface temperature (SST) method (ERF_fSST) has much more certainty than regression based methods. Thirty-year integrations are sufficient to reduce the 5-95% confidence interval in global ERF_fSST to 0.1 W m-2. For 2xCO2 ERF, 30 year integrations are needed to ensure that the signal is larger than the local confidence interval over more than 90% of the globe. Within the ERF_fSST method there are various options for prescribing SSTs and sea-ice. We explore these and find that ERF is only weakly dependent on the methodological choices. Prescribing the monthly-averaged seasonally varying model’s preindustrial climatology is recommended for its smaller random error and easier implementation. As part of CMIP6, the Radiative Forcing Model Intercomparison Project (RFMIP) asks models to conduct 30-year ERF_fSST experiments using the model’s own preindustrial climatology of SST and sea-ice. The Aerosol and Chemistry Model Intercomparison Project (AerChemMIP) will also mainly use this approach. We propose this as a standard method for diagnosing ERF and recommend that it be used across the climate modelling community to aid future comparisons
Community Driven Development in Contexts of Conflict. Concept Paper Commissioned by ESSD, World Bank
Violent conflict represents not only a significant barrie r to
development; it also wipes out efforts to improve the situation.
Experience from many developing countries has shown that
Community Driven Development (CDD) programmes have
been particularly effective in establishing or expanding
essential social services and physical infrastructure at the local
level. However, using CDD approaches in a conflict context as
a means in post-war rehabilitation represents new challenges.
When carried out in contexts of past or persistent conflict,
CDD projects are confronted with some major challenges:
•communities where projects are set may be deeply
divided;
•power is unequally distributed;
•lines between combatants and civilians may be
blurred;
•a need to address past traumas may give rise to calls
for inquiries or trials; and
•economic recovery and basic services may be urgently
needed.
Nonetheless, the point of departure in this paper commissioned
by the CDD unit of the Environmentally and Socially
Sustainable Development (ESSD) Network of the World Bank,
is that participatory and demand-led development approaches
might potentially address three critical concerns in conflict
contexts:
•The need for speedy and cost-effective delivery of
reconstruction assistance.
•The need to improve the state-citizen relationship.
•The need to create alternative forms of community
organisation that foster reconciliation between
factions of the society
Aerosol Absorption: Progress Towards Global and Regional Constraints
Some aerosols absorb solar radiation, altering cloud properties, atmospheric stability and circulation dynamics, and the water cycle. Here we review recent progress towards global and regional constraints on aerosol absorption from observations and modeling, considering physical properties and combined approaches crucial for understanding the total (natural and anthropogenic) influences of aerosols on the climate. We emphasize developments in black carbon absorption alteration due to coating and ageing, brown carbon characterization, dust composition, absorbing aerosol above cloud, source modeling and size distributions, and validation of high-resolution modeling against a range of observations. Both observations and modeling of total aerosol absorption, absorbing aerosol optical depths and single scattering albedo, as well as the vertical distribution of atmospheric absorption, still suffer from uncertainties and unknowns significant for climate applications. We offer a roadmap of developments needed to bring the field substantially forward
Sensible heat has significantly affected the global hydrological cycle over the historical period
Globally, latent heating associated with a change in precipitation is balanced by changes to atmospheric radiative cooling and sensible heat fluxes. Both components can be altered by climate forcing mechanisms and through climate feedbacks, but the impacts of climate forcing and feedbacks on sensible heat fluxes have received much less attention. Here we show, using a range of climate modelling results, that changes in sensible heat are the dominant contributor to the present global-mean precipitation change since preindustrial time, because the radiative impact of forcings and feedbacks approximately compensate. The model results show a dissimilar influence on sensible heat and precipitation from various drivers of climate change. Due to its strong atmospheric absorption, black carbon is found to influence the sensible heat very differently compared to other aerosols and greenhouse gases. Our results indicate that this is likely caused by differences in the impact on the lower tropospheric stability
- …
