22 research outputs found

    Neutron-induced Fission Cross Section of240,242Pu

    Get PDF
    A sensitivity analysis for the new generation of fast reactors [Salvatores (2008)] has shown the importance of improved cross section data for several actinides. Among them, the240,242Pu(n,f) cross sections require an accuracy improvement to 1-3% and 3-5%, respectively, from the current level of 6% and 20%. At the Van de Graaff facility of the Institute for Reference Materials and Measurements (JRC-IRMM) the fission cross section of the two isotopes was measured relative to two secondary standard reactions,237Np(n,f) and238U(n,f), using a twin Frisch-grid ionization chamber. The secondary standard reactions were benchmarked through measurements against the primary standard reaction235U(n,f) in the same geometry. Sample masses were determined by means of low-geometry alpha counting or/and a 2p Frisch-grid ionization chamber, with an uncertainty lower than 2%. The neutron flux and the impact of scattering from material between source and target was examined, the largest effect having been found in cross section ratio measurements between a fissile and a fertile isotope. Our240,242Pu(n,f) cross sections are in agreement with previous experimental results and slightly lower than present evaluations. In case of the242Pu(n,f) reaction no evidence for a resonance at En=1.1 MeV was found.Postprint (published version

    Measurement of the 240Pu(n,f) cross-section at the CERN n-TOF facility : First results from experimental area II (EAR-2)

    Get PDF
    The accurate knowledge of the neutron-induced fission cross-sections of actinides and other isotopes involved in the nuclear fuel cycle is essential for the design of advanced nuclear systems, such as Generation-IV nuclear reactors. Such experimental data can also provide the necessary feedback for the adjustment of nuclear model parameters used in the evaluation process, resulting in the further development of nuclear fission models. In the present work, the 240Pu(n,f) cross-section was measured at CERN's n-TOF facility relative to the well-known 235U(n,f) cross section, over a wide range of neutron energies, from meV to almost MeV, using the time-of-flight technique and a set-up based on Micromegas detectors. This measurement was the first experiment to be performed at n-TOF's new experimental area (EAR-2), which offers a significantly higher neutron flux compared to the already existing experimental area (EAR-1). Preliminary results as well as the experimental procedure, including a description of the facility and the data handling and analysis, are presented

    Neutron induced fission cross section measurements of 240

    Full text link
    Accurate neutron induced fission cross section of 240Pu and 242Pu are required in view of making nuclear technology safer and more efficient to meet the upcoming needs for the future generation of nuclear power plants (GEN-IV). The probability for a neutron to induce such reactions figures in the NEA Nuclear Data High Priority Request List [1]. A measurement campaign to determine neutron induced fission cross sections of 240Pu and 242Pu at 2.51 MeV and 14.83 MeV has been carried out at the 3.7 MV Van De Graaff linear accelerator at Physikalisch-Technische Bundesanstalt (PTB) in Braunschweig. Two identical Frisch Grid fission chambers, housing back to back a 238U and a APu target (A = 240 or A = 242), were employed to detect the total fission yield. The targets were molecular plated on 0.25 mm aluminium foils kept at ground potential and the employed gas was P10. The neutron fluence was measured with the proton recoil telescope (T1), which is the German primary standard for neutron fluence measurements. The two measurements were related using a De Pangher long counter and the charge as monitors. The experimental results have an average uncertainty of 3–4% at 2.51 MeV and for 6–8% at 14.81 MeV and have been compared to the data available in literature

    Fission cross-sections, prompt fission neutron and Îł-ray emission in request for nuclear applications

    No full text
    In recent years JRC-IRMM has been investigating fission cross-sections of 240,242Pu in the fast-neutron energy range relevant for innovative reactor systems and requested in the High Priority Request List (HPRL) of the OECD/Nuclear Energy Agency (NEA). In addition to that, prompt neutron multiplicities are being investigated for the major isotopes 235U, 239Pu in the neutron-resonance region using a newly developed scintillation detector array (SCINTIA) and an innovative modification of the Frisch-grid ionisation chamber for fission-fragment detection. These data are highly relevant for improved neutron data evaluation and requested by the OECD/Working Party on Evaluation Cooperation (WPEC). Thirdly, also prompt fission Îł-ray emission is investigated using highly efficient lanthanide-halide detectors with superior timing resolution. Again, those data are requested in the HPRL for major actinides to solve open questions on an under-prediction of decay heat in nuclear reactors. The information on prompt fission neutron and Îł-ray emission is crucial for benchmarking nuclear models to study the de-excitation process of neutron-rich fission fragments. Information on Îł-ray emission probabilities is also useful in decommissioning exercises on damaged nuclear power plants like Fukushima Daiichi to which JRC-IRMM is contributing. The results on the 240,242Pu fission cross section, 235U prompt neutron multiplicity in the resonance region and correlations with fission fragments and prompt Îł-ray emission for several isotopes will be presented and put into perspective

    Fission cross-sections, prompt fission neutron and Îł-ray emission in request for nuclear applications

    No full text
    In recent years JRC-IRMM has been investigating fission cross-sections of 240,242Pu in the fast-neutron energy range relevant for innovative reactor systems and requested in the High Priority Request List (HPRL) of the OECD/Nuclear Energy Agency (NEA). In addition to that, prompt neutron multiplicities are being investigated for the major isotopes 235U, 239Pu in the neutron-resonance region using a newly developed scintillation detector array (SCINTIA) and an innovative modification of the Frisch-grid ionisation chamber for fission-fragment detection. These data are highly relevant for improved neutron data evaluation and requested by the OECD/Working Party on Evaluation Cooperation (WPEC). Thirdly, also prompt fission Îł-ray emission is investigated using highly efficient lanthanide-halide detectors with superior timing resolution. Again, those data are requested in the HPRL for major actinides to solve open questions on an under-prediction of decay heat in nuclear reactors. The information on prompt fission neutron and Îł-ray emission is crucial for benchmarking nuclear models to study the de-excitation process of neutron-rich fission fragments. Information on Îł-ray emission probabilities is also useful in decommissioning exercises on damaged nuclear power plants like Fukushima Daiichi to which JRC-IRMM is contributing. The results on the 240,242Pu fission cross section, 235U prompt neutron multiplicity in the resonance region and correlations with fission fragments and prompt Îł-ray emission for several isotopes will be presented and put into perspective

    Towards high accurate neutron-induced fission cross sections of

    No full text
    Fast spectrum neutron-induced fission cross sections of transuranic isotopes are being of special demand in order to provide accurate data for the new GEN-IV nuclear power plants. To minimize the uncertainties on these measurements accurate data on spontaneous fission half-lives and detector efficiencies are a key point. High α-active actinides need special attention since the misinterpretation of detector signals can lead to low efficiency values or underestimation in fission fragment detection. In that context, 240,242Pu isotopes have been studied by means of a Twin Frisch-Grid Ionization Chamber (TFGIC) for measurements of their neutron-induced fission cross section. Gases with different drift velocities have been used, namely P10 and CH4. The detector efficiencies for both samples have been determined and improved spontaneous fission half-life values were obtained

    Absolute and relative cross section measurements of

    No full text
    Cross section measurements in the fast energy region are being demanded as one of the key ingredients for modelling Generation-IV nuclear power plants. However, in facilities where there are no time-of-flight possibilities or it is not convenient to use them, using the 235U(n,f) cross section as a benchmark would require a careful knowledge of the room scatter in the experimental area. In this paper we present measurements of two threshold reactions, 238U(n,f) and 237Np(n,f), that could become a standard between their fission threshold and 2.5 MeV, if the discrepancies shown in the evaluations and in some experimental data can be solved. The preliminary results are in agreement with the present ENDF/B-VII.1 evaluation

    Absolute and relative cross section measurements of 237Np(n,f) and 238U(n,f) at the National Physical Laboratory

    No full text
    Cross section measurements in the fast energy region are being demanded as one of the key ingredients for modelling Generation-IV nuclear power plants. However, in facilities where there are no time-of-flight possibilities or it is not convenient to use them, using the 235U(n,f) cross section as a benchmark would require a careful knowledge of the room scatter in the experimental area. In this paper we present measurements of two threshold reactions, 238U(n,f) and 237Np(n,f), that could become a standard between their fission threshold and 2.5 MeV, if the discrepancies shown in the evaluations and in some experimental data can be solved. The preliminary results are in agreement with the present ENDF/B-VII.1 evaluation
    corecore