17 research outputs found

    Lipid nanocarriers loaded with natural compounds: Potential new therapies for age related neurodegenerative diseases?

    Get PDF
    Article in pressAge related neurodegenerative disorders (ARND) are presented as the most debilitating and challenging diseases associated with the central nervous system. Despite the advent of active molecules with a positive role on neurodegenerative mechanisms, many of the current therapeutic strategies remain ineffective in treating or preventing ARND. Lipid nanocarriers have emerged as efficient delivery systems with the capability to cross biological barriers, especially the blood brain barrier (BBB). Also, when associated to natural compounds, lipid nanocarriers have demonstrated to be an interesting alternative to ARND therapies with multiple beneficial effects. This comprehensive review focus on state-of-the-art lipid based nanocarriers for the delivery of natural compounds targeting neurodegeneration. A critical analysis of published reports will be also provided giving indications to researchers about the most promising ARND nanotherapy strategies.Portuguese Foundation for Science and Technology (FCT) in the framework of the Strategic Funding UID/FIS/04650/2013. Marlene Lúcio acknowledges the exploratory project funded by FCT with the reference IF/00498/2012. Telma Soares acknowledges COMPETE 2020 “Programa Operacional Competitividade e internacionalização”info:eu-repo/semantics/publishedVersio

    Effect of laser radiation on physicochemical and functional properties of human hemoglobin in vitro

    No full text
    Exposure to laser radiation increases pH and isoelectric point of human hemoglobin solution, improves the acid-base properties, increases affinity for oxygen, and decreases the Bohr effect in comparison with intact hemoglobin. The mechanisms underlying these changes are discussed

    Effect of laser radiation on physicochemical and functional properties of human hemoglobin in vitro

    No full text
    Exposure to laser radiation increases pH and isoelectric point of human hemoglobin solution, improves the acid-base properties, increases affinity for oxygen, and decreases the Bohr effect in comparison with intact hemoglobin. The mechanisms underlying these changes are discussed

    Chronic Myeloid Leukemia: Long-Term Experience of Target Therapy

    No full text
    Background & Aims. Interpretation of key aspects of pathogenesis of chronic myeloid leukemia (CML) and development and introduction of target therapy have changed the prognosis of this once fatal disease dramatically. Results of numerous clinical trials demonstrated substantial superiority of tyrosine kinase inhibitors over previous therapy techniques. At the same time, clinical trials had limitations in patient enrollment, as well as treatment conditions and duration. The analysis of our clinical experience in CML target therapy (over the period from 2003 till 2015) is an important argument for introduction of novel drugs into routine clinical practice. The aim of the study is to analyze our own experience in CML target therapy and to compare our results with clinical trials data. Methods. Outpatient’s cards and case histories of CML patients treated in the Russian Scientific Research Institute of Hematology and Transfusiology over last 12 years were analyzed in this work. Published results of multi-center clinical trials evaluating the use of tyrosine kinase inhibitors in CML were used for a comparative analysis. The primary morbidity rate and the prevalence of CML, results of first and subsequent treatment lines were studied with assessment of survival rates, adverse events, and the nature of the response (hematologic, cytogenetic and molecular). Results. The experience in treatment of 208 CML patients was analyzed. The use of imatinib led to clinical and hematological remission (complete hematologic response) was achieved in 95 % of patients. The frequency of complete cytogenetic responses (CCyR) was 69 %, and that of major molecular responses (MMR) was 58 %. The overall 5-year survival (OS) was 86.4 %, the 10-years OS was 67.5 %. The use of nilotinib during the second line permitted to achieve CCyR in 61 % of patients, and the MMR in 55 % of cases. The two-year OS was 96 % and the 5-year OS was 68 %. CCyR and MMR were achieved in 50 % patients treated with dasatinib during the second line. As for the third line, CCyR was achieved in 50 % of patients and MMR in 25 %. In case of previous imatinib and nilotinib resistance, CCyR was observed only in 36 % of patients and MMR in 18 % of cases. During second-line dasatinib treatment, the 2-year OS was 85 %, and the 5-year OS was 51 %; as for the third line, the results were 75 % and 50 %, respectively. The range and rates of adverse events of the therapy, in general, corresponded to results of clinical trials. Conclusion. The use of tyrosine kinase inhibitors in treatment of CML permits to prolong patient’s life span and quality of life significantly. The use of nilotinib and dazatinib (in case of nilotinib intolerance and/or resistance) could be effective in most patients

    Doped GaSe crystals for laser frequency conversion

    Get PDF
    In this review, we introduce the current state of the art of the growth technology of pure, lightly doped, and heavily doped (solid solution) nonlinear gallium selenide (GaSe) crystals that are able to generate broadband emission from the near infrared (IR) (0.8 mm) through the mid- and far-IR (terahertz (THz)) ranges and further into the millimeter wave (5.64 mm) range. For the first time, we show that appropriate doping is an efficient method controlling a range of the physical properties of GaSe crystals that are responsible for frequency conversion efficiency and exploitation parameters. After appropriate doping, uniform crystals grown by a modified technology with heat field rotation possess up to 3 times lower absorption coefficient in the main transparency window and THz range. Moreover, doping provides the following benefits: raises by up to 5 times the optical damage threshold; almost eliminates two-photon absorption; allows for dispersion control in the THz range independent of the mid-IR dispersion; and enables crystal processing in arbitrary directions due to the strengthened lattice. Finally, doped GaSe demonstrated better usefulness for processing compared with GaSe grown by the conventional technology and up to 15 times higher frequency conversion efficiency
    corecore