62 research outputs found

    Initial characteristics of RbcX proteins from Arabidopsis thaliana

    Get PDF
    Form I of Rubisco (ribulose-1,5-bisphosphate carboxylase/oxygenase) is composed of eight large (RbcL) and eight small (RbcS) subunits. Assembly of these subunits into a functional holoenzyme requires the assistance of additional assembly factors. One such factor is RbcX, which has been demonstrated to act as a chaperone in the assembly of most cyanobacterial Rubisco complexes expressed in heterologous system established in Escherichia coli cells. Analysis of Arabidopsis thaliana genomic sequence revealed the presence of two genes encoding putative homologues of cyanobacterial RbcX protein: AtRbcX1 (At4G04330) and AtRbcX2 (At5G19855). In general, both RbcX homologues seem to have the same function which is chaperone activity during Rubisco biogenesis. However, detailed analysis revealed slight differences between them. AtRbcX2 is localized in the stromal fraction of chloroplasts whereas AtRbcX1 was found in the insoluble fraction corresponding with thylakoid membranes. Search for putative “partners” using mass spectrometry analysis suggested that apart from binding to RbcL, AtRbcX1 may also interact with β subunit of chloroplast ATP synthase. Quantitative RT-PCR analysis of AtRbcX1 and AtRbcX2 expression under various stress conditions indicated that AtRbcX2 is transcribed at a relatively stable level, while the transcription level of AtRbcX1 varies significantly. In addition, we present the attempts to elucidate the secondary structure of AtRbcX proteins using CD spectroscopy. Presented results are the first known approach to elucidate the role of RbcX proteins in Rubisco assembly in higher plants

    Improved Glycaemia correlates with liver fat reduction in obese, type 2 diabetes, patients given glucagon-like peptide-1 (GLP-1) receptor agonists

    Get PDF
    Glucagon-like peptide-1 receptor agonists (GLP-1 RA) are effective for obese patients with type 2 diabetes mellitus (T2DM) because they concomitantly target obesity and dysglycaemia. Considering the high prevalence of non-alcoholic fatty liver disease (NAFLD) in patients with T2DM, we determined the impact of 6 months' GLP-1 RA therapy on intrahepatic lipid (IHL) in obese, T2DM patients with hepatic steatosis, and evaluated the inter-relationship between changes in IHL with those in glycosylated haemoglobin (HbA(1)c), body weight, and volume of abdominal visceral and subcutaneous adipose tissue (VAT and SAT). We prospectively studied 25 (12 male) patients, age 50±10 years, BMI 38.4±5.6 kg/m(2) (mean ± SD) with baseline IHL of 28.2% (16.5 to 43.1%) and HbA(1)c of 9.6% (7.9 to 10.7%) (median and interquartile range). Patients treated with metformin and sulphonylureas/DPP-IV inhibitors were given 6 months GLP-1 RA (exenatide, n = 19; liraglutide, n = 6). IHL was quantified by liver proton magnetic resonance spectroscopy ((1)H MRS) and VAT and SAT by whole body magnetic resonance imaging (MRI). Treatment was associated with mean weight loss of 5.0 kg (95% CI 3.5,6.5 kg), mean HbA(1c) reduction of 1·6% (17 mmol/mol) (0·8,2·4%) and a 42% relative reduction in IHL (-59.3, -16.5%). The relative reduction in IHL correlated with that in HbA(1)c (ρ = 0.49; p = 0.01) but was not significantly correlated with that in total body weight, VAT or SAT. The greatest IHL reduction occurred in individuals with highest pre-treatment levels. Mechanistic studies are needed to determine potential direct effects of GLP-1 RA on human liver lipid metabolism

    QCD and strongly coupled gauge theories : challenges and perspectives

    Get PDF
    We highlight the progress, current status, and open challenges of QCD-driven physics, in theory and in experiment. We discuss how the strong interaction is intimately connected to a broad sweep of physical problems, in settings ranging from astrophysics and cosmology to strongly coupled, complex systems in particle and condensed-matter physics, as well as to searches for physics beyond the Standard Model. We also discuss how success in describing the strong interaction impacts other fields, and, in turn, how such subjects can impact studies of the strong interaction. In the course of the work we offer a perspective on the many research streams which flow into and out of QCD, as well as a vision for future developments.Peer reviewe

    Physics of the HL-LHC, and perspectives at the HE-LH: report from working group 4: opportunities in flavour physics at the HL-LHC and HE-LHC

    Get PDF
    Motivated by the success of the flavour physics programme carried out over the last decade at the Large Hadron Collider (LHC), we characterize in detail the physics potential of its High-Luminosity and High-Energy upgrades in this domain of physics. We document the extraordinary breadth of the HL/HE-LHC programme enabled by a putative Upgrade II of the dedicated flavour physics experiment LHCb and the evolution of the established flavour physics role of the ATLAS and CMS general purpose experiments. We connect the dedicated flavour physics programme to studies of the top quark, Higgs boson, and direct high-pT searches for new particles and force carriers. We discuss the complementarity of their discovery potential for physics beyond the Standard Model, affirming the necessity to fully exploit the LHC’s flavour physics potential throughout its upgrade eras

    Magnetic Resonance Imaging of the Epicardial Adipose Tissue

    No full text
    Epicardial adipose tissue (EAT) is a measurable risk factor and marker of visceral adipose tissue. Magnetic resonance imaging (MRI) is considered the gold standard technique to measure the adipose tissue, also because it does not require ionizing radiations. Dedicated cardiac magnetic resonance (CMR) imaging protocols have been developed to assess EAT volume. CMR provides a precise and noninvasive assessment of both EAT thickness and volume. As EAT is not equally distributed through the heart and when abundant may fill in folding spaces, steady-state free precession (SSFP) sequences of CMR should be used to more accurately measure the different and deeper EAT locations. Proton magnetic resonance spectroscopy (1H-MRS) is the gold standard technique to measure myocardial triglyceride content that is independently correlated with ultrasound measured EAT thickness
    corecore