30 research outputs found
Effect of gelling agent on colony formation in solid cultivation of microbial community in lake sediment
Ginsenoside Rg2 inhibits adipogenesis in 3T3-L1 preadipocytes and suppresses obesity in high-fat-diet-induced obese mice through the AMPK pathway
Evaluation of Possible Human Health Risk of Heavy Metals from the Consumption of Two Marine Fish Species Tenualosa ilisha and Dorosoma cepedianum
Novel Culturing Techniques Select for Heterotrophs and Hydrocarbon Degraders in a Subantarctic Soil
The soil substrate membrane system (SSMS) is a novel micro-culturing technique targeted at terrestrial soil systems. We applied the SSMS to pristine and diesel fuel spiked polar soils, along with traditional solid media culturing and culture independent 454 tag pyrosequencing to elucidate the effects of diesel fuel on the soil community. The SSMS enriched for up to 76% of the total soil diversity within high diesel fuel concentration soils, in contrast to only 26% of the total diversity for the control soils. The majority of organisms originally recovered with the SSMS were lost in the transfer to solid media, with all 300 isolates belonging to Proteobacteria, Firmicutes, Actinobacteria or Bacteroidetes, the four phyla most frequently associated with soil culturing efforts. The soils spiked with high diesel fuel concentrations exhibited reduced species richness, diversity and a selection towards heterotrophs and hydrocarbon degraders in comparison to the control soils. Based on these observations and the unusually high level of overlap in microbial taxa observed between methods, we suggest the SSMS holds potential to exploit hydrocarbon degraders and other targets within simplified bacterial systems, yet is inadequate for soil ecology and ecotoxicology studies where identifying rare oligotrophic species is paramount
Machine-learning-based prediction of disability progression in multiple sclerosis: an observational, international, multi-center study
AbstractBackgroundDisability progression is a key milestone in the disease evolution of people with multiple sclerosis (PwMS). Prediction models of disability progression have not yet reached the level of trust needed to be adopted in the clinic. A common benchmark to assess model development in multiple sclerosis is also currently lacking.MethodsData of adult PwMS with a follow-up of at least three years from 146 MS centers, spread over 40 countries and collected by the MSBase consortium was used. With basic inclusion criteria for quality requirements, it represents a total of 15, 240 PwMS. External validation was performed and repeated five times to assess the significance of the results. TRIPOD guidelines were followed.Confirmed disability progression after two years was predicted, with a confirmation window of six months. Only routinely collected variables were used such as the expended disability status scale, treatment, relapse information, and MS course.To learn the probability of disability progression, state-of-the-art machine learning models were investigated. The discrimination performance of the models is evaluated on their area under the receiver operator curve (ROC-AUC) and under the precision recall curve (AUC-PR), and their calibration via the Brier score and the expected calibration error.FindingsA temporal attention model was the best model. It achieved a ROC-AUC of 0·71 ± 0·01, an AUC-PR of 0·26 ± 0·02, a Brier score of 0·1 ± 0·01 and an expected calibration error of 0·07 ± 0·04. The history of disability progression is more predictive for future disability progression than the treatment or relapses.InterpretationGood discrimination and calibration performance on an external validation set is achieved, using only routinely collected variables. This makes these models ready for a clinical impact study. All our preprocessing and model code is available at https://gitlab.com/edebrouwer/ms_benchmark, making this task an ideal benchmark for predicting disability progression in MS.</jats:sec
The risk of secondary progressive multiple sclerosis is geographically determined but modifiable
The risk of secondary progressive multiple sclerosis is geographically determined but modifiable
Geographical variations in the incidence and prevalence of multiple sclerosis have been reported globally. Latitude as a surrogate for exposure to ultraviolet radiation but also other lifestyle and environmental factors are regarded as drivers of this variation. No previous studies evaluated geographical variation in the risk of secondary progressive multiple sclerosis, an advanced form of multiple sclerosis that is characterized by steady accrual of irreversible disability. We evaluated differences in the risk of secondary progressive multiple sclerosis in relation to latitude and country of residence, modified by high-to-moderate efficacy immunotherapy in a geographically diverse cohort of patients with relapsing-remitting multiple sclerosis. The study included relapsing-remitting multiple sclerosis patients from the global MSBase registry with at least one recorded assessment of disability. Secondary progressive multiple sclerosis was identified as per clinician diagnosis. Sensitivity analyses used the operationalized definition of secondary progressive multiple sclerosis and the Swedish decision tree algorithm. A proportional hazards model was used to estimate the cumulative risk of secondary progressive multiple sclerosis by country of residence (latitude), adjusted for sex, age at disease onset, time from onset to relapsing-remitting phase, disability (Multiple Sclerosis Severity Score) and relapse activity at study inclusion, national multiple sclerosis prevalence, government health expenditure, and proportion of time treated with high-to-moderate efficacy disease-modifying therapy. Geographical variation in time from relapsing-remitting phase to secondary progressive phase of multiple sclerosis was modelled through a proportional hazards model with spatially correlated frailties. We included 51 126 patients (72% female) from 27 countries. The median survival time from relapsing-remitting phase to secondary progressive multiple sclerosis among all patients was 39 (95% confidence interval: 37 to 43) years. Higher latitude [median hazard ratio = 1.21, 95% credible interval (1.16, 1.26)], higher national multiple sclerosis prevalence [1.07 (1.03, 1.11)], male sex [1.30 (1.22, 1.39)], older age at onset [1.35 (1.30, 1.39)], higher disability [2.40 (2.34, 2.47)] and frequent relapses [1.18 (1.15, 1.21)] at inclusion were associated with increased hazard of secondary progressive multiple sclerosis. Higher proportion of time on high-to-moderate efficacy therapy substantially reduced the hazard of secondary progressive multiple sclerosis [0.76 (0.73, 0.79)] and reduced the effect of latitude [interaction: 0.95 (0.92, 0.99)]. At the country-level, patients in Oman, Tunisia, Iran and Canada had higher risks of secondary progressive multiple sclerosis relative to the other studied regions. Higher latitude of residence is associated with a higher probability of developing secondary progressive multiple sclerosis. High-to-moderate efficacy immunotherapy can mitigate some of this geographically co-determined risk
The risk of secondary progressive multiple sclerosis is geographically determined but modifiable
Geographical variations in the incidence and prevalence of multiple sclerosis have been reported globally. Latitude as a surrogate for exposure to ultraviolet radiation but also other lifestyle and environmental factors are regarded as drivers of this variation. No previous studies evaluated geographical variation in the risk of secondary progressive multiple sclerosis, an advanced form of multiple sclerosis that is characterized by steady accrual of irreversible disability. We evaluated differences in the risk of secondary progressive multiple sclerosis in relation to latitude and country of residence, modified by high-to-moderate efficacy immunotherapy in a geographically diverse cohort of patients with relapsing-remitting multiple sclerosis. The study included relapsing-remitting multiple sclerosis patients from the global MSBase registry with at least one recorded assessment of disability. Secondary progressive multiple sclerosis was identified as per clinician diagnosis. Sensitivity analyses used the operationalized definition of secondary progressive multiple sclerosis and the Swedish decision tree algorithm. A proportional hazards model was used to estimate the cumulative risk of secondary progressive multiple sclerosis by country of residence (latitude), adjusted for sex, age at disease onset, time from onset to relapsing-remitting phase, disability (Multiple Sclerosis Severity Score) and relapse activity at study inclusion, national multiple sclerosis prevalence, government health expenditure, and proportion of time treated with high-to-moderate efficacy disease-modifying therapy. Geographical variation in time from relapsing-remitting phase to secondary progressive phase of multiple sclerosis was modelled through a proportional hazards model with spatially correlated frailties. We included 51 126 patients (72% female) from 27 countries. The median survival time from relapsing-remitting phase to secondary progressive multiple sclerosis among all patients was 39 (95% confidence interval: 37 to 43) years. Higher latitude [median hazard ratio = 1.21, 95% credible interval (1.16, 1.26)], higher national multiple sclerosis prevalence [1.07 (1.03, 1.11)], male sex [1.30 (1.22, 1.39)], older age at onset [1.35 (1.30, 1.39)], higher disability [2.40 (2.34, 2.47)] and frequent relapses [1.18 (1.15, 1.21)] at inclusion were associated with increased hazard of secondary progressive multiple sclerosis. Higher proportion of time on high-to-moderate efficacy therapy substantially reduced the hazard of secondary progressive multiple sclerosis [0.76 (0.73, 0.79)] and reduced the effect of latitude [interaction: 0.95 (0.92, 0.99)]. At the country-level, patients in Oman, Tunisia, Iran and Canada had higher risks of secondary progressive multiple sclerosis relative to the other studied regions. Higher latitude of residence is associated with a higher probability of developing secondary progressive multiple sclerosis. High-to-moderate efficacy immunotherapy can mitigate some of this geographically co-determined risk
Early non-disabling relapses are important predictors of disability accumulation in people with relapsing-remitting multiple sclerosis.
Peer reviewed: TrueBACKGROUND: The prognostic significance of non-disabling relapses in people with relapsing-remitting multiple sclerosis (RRMS) is unclear. OBJECTIVE: To determine whether early non-disabling relapses predict disability accumulation in RRMS. METHODS: We redefined mild relapses in MSBase as 'non-disabling', and moderate or severe relapses as 'disabling'. We used mixed-effects Cox models to compare 90-day confirmed disability accumulation events in people with exclusively non-disabling relapses within 2 years of RRMS diagnosis to those with no early relapses; and any early disabling relapses. Analyses were stratified by disease-modifying therapy (DMT) efficacy during follow-up. RESULTS: People who experienced non-disabling relapses within 2 years of RRMS diagnosis accumulated more disability than those with no early relapses if they were untreated (n = 285 vs 4717; hazard ratio (HR) = 1.29, 95% confidence interval (CI) = 1.00-1.68) or given platform DMTs (n = 1074 vs 7262; HR = 1.33, 95% CI = 1.15-1.54), but not if given high-efficacy DMTs (n = 572 vs 3534; HR = 0.90, 95% CI = 0.71-1.13) during follow-up. Differences in disability accumulation between those with early non-disabling relapses and those with early disabling relapses were not confirmed statistically. CONCLUSION: This study suggests that early non-disabling relapses are associated with a higher risk of disability accumulation than no early relapses in RRMS. This risk may be mitigated by high-efficacy DMTs. Therefore, non-disabling relapses should be considered when making treatment decisions
