155 research outputs found

    Hierarchical organization of urban mobility and its connection with city livability

    Get PDF
    This is the final version. Available on open access from Nature Research via the DOI in this recordThe recent trend of rapid urbanization makes it imperative to understand urban characteristics such as infrastructure, population distribution, jobs, and services that play a key role in urban livability and sustainability. A healthy debate exists on what constitutes optimal structure regarding livability in cities, interpolating, for instance, between mono- and poly-centric organization. Here anonymous and aggregated flows generated from three hundred million users, opted-in to Location History, are used to extract global Intra-urban trips. We develop a metric that allows us to classify cities and to establish a connection between mobility organization and key urban indicators. We demonstrate that cities with strong hierarchical mobility structure display an extensive use of public transport, higher levels of walkability, lower pollutant emissions per capita and better health indicators. Our framework outperforms previous metrics, is highly scalable and can be deployed with little cost, even in areas without resources for traditional data collection.Conselleria d’Educacio, Cultura i Universitats of the Government of the Balearic IslandsEuropean Social FundSpanish Ministry of Science, Innovation and UniversitiesNational Agency for Research Funding AEIFEDER (EU)Maria de Maeztu program for Units of Excellence in R&DNYS Center of Excellence in Data Science, University of RochesterU. S. Army Research Office (ARO

    The relationship between cadence, pedalling technique and gross efficiency in cycling

    Get PDF
    Technique and energy saving are two variables often considered as important for performance in cycling and related to each other. Theoretically, excellent pedalling technique should give high gross efficiency (GE). The purpose of the present study was to examine the relationship between pedalling technique and GE. 10 well-trained cyclists were measured for GE, force effectiveness (FE) and dead centre size (DC) at a work rate corresponding to ~75% of VO2max during level and inclined cycling, seat adjusted forward and backward, at three different cadences around their own freely chosen cadence (FCC) on an ergometer. Within subjects, FE, DC and GE decreased as cadence increased (p < 0.001). A strong relationship between FE and GE was found, which was to great extent explained by FCC. The relationship between cadence and both FE and GE, within and between subjects, was very similar, irrespective of FCC. There was no difference between level and inclined cycling position. The seat adjustments did not affect FE, DC and GE or the relationship between them. Energy expenditure is strongly coupled to cadence, but force effectiveness, as a measure for pedalling technique, is not likely the cause of this relationship. FE, DC and GE are not affected by body orientation or seat adjustments, indicating that these parameters and the relationship between them are robust to coordinative challenges within a range of cadence, body orientation and seat position that is used in regular cycling

    How Group Size Affects Vigilance Dynamics and Time Allocation Patterns: The Key Role of Imitation and Tempo

    Get PDF
    In the context of social foraging, predator detection has been the subject of numerous studies, which acknowledge the adaptive response of the individual to the trade-off between feeding and vigilance. Typically, animals gain energy by increasing their feeding time and decreasing their vigilance effort with increasing group size, without increasing their risk of predation (‘group size effect’). Research on the biological utility of vigilance has prevailed over considerations of the mechanistic rules that link individual decisions to group behavior. With sheep as a model species, we identified how the behaviors of conspecifics affect the individual decisions to switch activity. We highlight a simple mechanism whereby the group size effect on collective vigilance dynamics is shaped by two key features: the magnitude of social amplification and intrinsic differences between foraging and scanning bout durations. Our results highlight a positive correlation between the duration of scanning and foraging bouts at the level of the group. This finding reveals the existence of groups with high and low rates of transition between activies, suggesting individual variations in the transition rate, or ‘tempo’. We present a mathematical model based on behavioral rules derived from experiments. Our theoretical predictions show that the system is robust in respect to variations in the propensity to imitate scanning and foraging, yet flexible in respect to differences in the duration of activity bouts. The model shows how individual decisions contribute to collective behavior patterns and how the group, in turn, facilitates individual-level adaptive responses

    How to improve walking, balance and social participation following stroke: a comparison of the long term effects of two walking aids--canes and an orthosis TheraTogs--on the recovery of gait following acute stroke. A study protocol for a multi-centre, single blind, randomised control trial

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Annually, some 9000 people in Switzerland suffer a first time stroke. Of these 60% are left with moderate to severe walking disability. Evidence shows that rehabilitation techniques which emphasise activity of the hemiplegic side increase ipsilesional cortical plasticity and improve functional outcomes. Canes are commonly used in gait rehabilitation although they significantly reduce hemiplegic muscle activity. We have shown that an orthosis "TheraTogs" (a corset with elasticated strapping) significantly increases hemiplegic muscle activity during gait. The aim of the present study is to investigate the long term effects on the recovery of gait, balance and social participation of gait rehabilitation with TheraTogs compared to gait rehabilitation with a cane following first time acute stroke.</p> <p>Methods/Design</p> <p>Multi-centre, single blind, randomised trial with 120 patients after first stroke. When subjects have reached Functional Ambulation Category 3 they will be randomly allocated into TheraTogs or cane group. TheraTogs will be applied to support hip extensor and abductor musculature according to a standardised procedure. Cane walking held at the level of the radial styloid of the sound wrist. Subjects will walk throughout the day with only the assigned walking aid. Standard therapy treatments and usual care will remain unchanged and documented. The intervention will continue for five weeks or until patients have reached Functional Ambulation category 5. Outcome measures will be assessed the day before begin of intervention, the day after completion, 3 months, 6 months and 2 years. Primary outcome: Timed "up and go" test, secondary outcomes: peak surface EMG of gluteus maximus and gluteus medius, activation patterns of hemiplegic leg musculature, temporo-spatial gait parameters, hemiplegic hip kinematics in the frontal and sagittal planes, dynamic balance, daily activity measured by accelerometry, Stroke Impact Scale. Significance levels will be 5% with 95% CI's. IntentionToTreat analyses will be performed. Descriptive statistics will be presented.</p> <p>Discussion</p> <p>This study could have significant implications for the clinical practice of gait rehabilitation after stroke, particularly the effect and appropriate use of walking aids.</p> <p>The results could be important for the development of clinical guidelines and for the socio-economic costs of post-stroke care</p> <p>Trial registration number</p> <p>ClinicalTrials.gov <a href="http://www.clinicaltrials.gov/ct2/show/NCT01366729">NCT01366729</a>.</p

    Feasibility and effects of adapted cardiac rehabilitation after stroke: a prospective trial

    Get PDF
    Abstract Background Despite the cardiovascular etiology of stroke, exercise and risk factor modification programs akin to cardiac rehabilitation (CR) are not available. This study aimed to establish the feasibility of adapting a CR model for individuals with mild to moderate stroke disability. A secondary objective was to determine the program's effects on aerobic and walking capacity, and stroke risk factors. Methods A repeated measures design was used with a 3-month baseline period and 6-month adapted CR intervention (n = 43, mean ± SD age 65 ± 12 years, 30 ± 28 months post stroke). Feasibility was determined by the number of participants who completed the study, occurrence of adverse events and frequency, duration and intensity of exercise performed. To determine effectiveness of the program, outcomes measured included aerobic capacity (VO2peak, ventilatory threshold), 6-Minute Walk Test (6MWT) distance, and risk factors. Descriptive statistics characterized the classes attended and number and intensity of exercise sessions. Paired t-tests, one-factor repeated measures analyses of variance contrasts and chi-square analyses were used to compare changes over time. Results Two participants withdrew during the baseline period. Of the remaining 41 participants who commenced the program, 38 (93%) completed all aspects. No serious adverse effects occurred. Post-intervention, VO2peak improved relative to the stable baseline period (P = 0.046) and the increase in ventilatory threshold approached significance (P = 0.062). Conclusions CR is feasible after stroke and may be adapted to accommodate for those with a range of post-stroke disability. It is effective in increasing aerobic capacity. CR may be an untapped opportunity for stroke survivors to access programs of exercise and risk factor modification to lower future event risk. Trial registration ClinicalTrials.gov registration number: NCT0106749

    Smaller spared subcortical nuclei are associated with worse post-stroke sensorimotor outcomes in 28 cohorts worldwide

    Get PDF
    Up to two-thirds of stroke survivors experience persistent sensorimotor impairments. Recovery relies on the integrity of spared brain areas to compensate for damaged tissue. Deep grey matter structures play a critical role in the control and regulation of sensorimotor circuits. The goal of this work is to identify associations between volumes of spared subcortical nuclei and sensorimotor behaviour at different timepoints after stroke. We pooled high-resolution T1-weighted MRI brain scans and behavioural data in 828 individuals with unilateral stroke from 28 cohorts worldwide. Cross-sectional analyses using linear mixed-effects models related post-stroke sensorimotor behaviour to non-lesioned subcortical volumes (Bonferroni-corrected, P < 0.004). We tested subacute (≀90 days) and chronic (≄180 days) stroke subgroups separately, with exploratory analyses in early stroke (≀21 days) and across all time. Sub-analyses in chronic stroke were also performed based on class of sensorimotor deficits (impairment, activity limitations) and side of lesioned hemisphere. Worse sensorimotor behaviour was associated with a smaller ipsilesional thalamic volume in both early (n = 179; d = 0.68) and subacute (n = 274, d = 0.46) stroke. In chronic stroke (n = 404), worse sensorimotor behaviour was associated with smaller ipsilesional putamen (d = 0.52) and nucleus accumbens (d = 0.39) volumes, and a larger ipsilesional lateral ventricle (d = -0.42). Worse chronic sensorimotor impairment specifically (measured by the Fugl-Meyer Assessment; n = 256) was associated with smaller ipsilesional putamen (d = 0.72) and larger lateral ventricle (d = -0.41) volumes, while several measures of activity limitations (n = 116) showed no significant relationships. In the full cohort across all time (n = 828), sensorimotor behaviour was associated with the volumes of the ipsilesional nucleus accumbens (d = 0.23), putamen (d = 0.33), thalamus (d = 0.33) and lateral ventricle (d = -0.23). We demonstrate significant relationships between post-stroke sensorimotor behaviour and reduced volumes of deep grey matter structures that were spared by stroke, which differ by time and class of sensorimotor measure. These findings provide additional insight into how different cortico-thalamo-striatal circuits support post-stroke sensorimotor outcomes

    Optimization of Muscle Activity for Task-Level Goals Predicts Complex Changes in Limb Forces across Biomechanical Contexts

    Get PDF
    Optimality principles have been proposed as a general framework for understanding motor control in animals and humans largely based on their ability to predict general features movement in idealized motor tasks. However, generalizing these concepts past proof-of-principle to understand the neuromechanical transformation from task-level control to detailed execution-level muscle activity and forces during behaviorally-relevant motor tasks has proved difficult. In an unrestrained balance task in cats, we demonstrate that achieving task-level constraints center of mass forces and moments while minimizing control effort predicts detailed patterns of muscle activity and ground reaction forces in an anatomically-realistic musculoskeletal model. Whereas optimization is typically used to resolve redundancy at a single level of the motor hierarchy, we simultaneously resolved redundancy across both muscles and limbs and directly compared predictions to experimental measures across multiple perturbation directions that elicit different intra- and interlimb coordination patterns. Further, although some candidate task-level variables and cost functions generated indistinguishable predictions in a single biomechanical context, we identified a common optimization framework that could predict up to 48 experimental conditions per animal (n = 3) across both perturbation directions and different biomechanical contexts created by altering animals' postural configuration. Predictions were further improved by imposing experimentally-derived muscle synergy constraints, suggesting additional task variables or costs that may be relevant to the neural control of balance. These results suggested that reduced-dimension neural control mechanisms such as muscle synergies can achieve similar kinetics to the optimal solution, but with increased control effort (≈2×) compared to individual muscle control. Our results are consistent with the idea that hierarchical, task-level neural control mechanisms previously associated with voluntary tasks may also be used in automatic brainstem-mediated pathways for balance

    Test of lepton universality in b→sℓ+ℓ−b \rightarrow s \ell^+ \ell^- decays

    Get PDF
    The first simultaneous test of muon-electron universality using B+→K+ℓ+ℓ−B^{+}\rightarrow K^{+}\ell^{+}\ell^{-} and B0→K∗0ℓ+ℓ−B^{0}\rightarrow K^{*0}\ell^{+}\ell^{-} decays is performed, in two ranges of the dilepton invariant-mass squared, q2q^{2}. The analysis uses beauty mesons produced in proton-proton collisions collected with the LHCb detector between 2011 and 2018, corresponding to an integrated luminosity of 9 fb−1\mathrm{fb}^{-1}. Each of the four lepton universality measurements reported is either the first in the given q2q^{2} interval or supersedes previous LHCb measurements. The results are compatible with the predictions of the Standard Model.Comment: All figures and tables, along with any supplementary material and additional information, are available at https://cern.ch/lhcbproject/Publications/p/LHCb-PAPER-2022-046.html (LHCb public pages
    • 

    corecore