213 research outputs found

    Enhanced flight performance by genetic manipulation of wing shape in Drosophila

    Get PDF
    Insect wing shapes are remarkably diverse and the combination of shape and kinematics determines both aerial capabilities and power requirements. However, the contribution of any specific morphological feature to performance is not known. Using targeted RNA interference to modify wing shape far beyond the natural variation found within the population of a single species, we show a direct effect on flight performance that can be explained by physical modelling of the novel wing geometry. Our data show that altering the expression of a single gene can significantly enhance aerial agility and that the Drosophila wing shape is not, therefore, optimized for certain flight performance characteristics that are known to be important. Our technique points in a new direction for experiments on the evolution of performance specialities in animals

    HST imaging of the dusty filaments and nucleus swirl in NGC4696 at the centre of the Centaurus Cluster

    Get PDF
    Narrow-band HST imaging has resolved the detailed internal structure of the 10 kpc diameter H alpha+[NII] emission line nebulosity in NGC4696, the central galaxy in the nearby Centaurus cluster, showing that the dusty, molecular, filaments have a width of about 60pc. Optical morphology and velocity measurements indicate that the filaments are dragged out by the bubbling action of the radio source as part of the AGN feedback cycle. Using the drag force we find that the magnetic field in the filaments is in approximate pressure equipartition with the hot gas. The filamentary nature of the cold gas continues inward, swirling around and within the Bondi accretion radius of the central black hole, revealing the magnetic nature of the gas flows in massive elliptical galaxies. HST imaging resolves the magnetic, dusty, molecular filaments at the centre of the Centaurus cluster to a swirl around and within the Bondi radius.This is the accepted manuscript. It is currently embargoed pending publication

    Parasitoid Increases Survival of Its Pupae by Inducing Hosts to Fight Predators

    Get PDF
    Many true parasites and parasitoids modify the behaviour of their host, and these changes are thought to be to the benefit of the parasites. However, field tests of this hypothesis are scarce, and it is often unclear whether the host or the parasite profits from the behavioural changes, or even if parasitism is a cause or consequence of the behaviour. We show that braconid parasitoids (Glyptapanteles sp.) induce their caterpillar host (Thyrinteina leucocerae) to behave as a bodyguard of the parasitoid pupae. After parasitoid larvae exit from the host to pupate, the host stops feeding, remains close to the pupae, knocks off predators with violent head-swings, and dies before reaching adulthood. Unparasitized caterpillars do not show these behaviours. In the field, the presence of bodyguard hosts resulted in a two-fold reduction in mortality of parasitoid pupae. Hence, the behaviour appears to be parasitoid-induced and confers benefits exclusively to the parasitoid

    Aerodynamics of the Hovering Hummingbird

    Full text link
    Despite profound musculoskeletal differences, hummingbirds (Trochilidae) are widely thought to employ aerodynamic mechanisms similar to those used by insects. The kinematic symmetry of the hummingbird upstroke and downstroke has led to the assumption that these halves of the wingbeat cycle contribute equally to weight support during hovering, as exhibited by insects of similar size. This assumption has been applied, either explicitly or implicitly, in widely used aerodynamic models, and in a variety of empirical tests. Here we provide measurements of the wake of hovering rufous hummingbirds (Selasphorus rufus) obtained with digital particle image velocimetry that show force asymmetry: hummingbirds produce 75% of their weight support during the downstroke and only 25% during the upstroke. Some of this asymmetry is probably due to inversion of their cambered wings during upstroke. The wake of hummingbird wings also reveals evidence of leading-edge vortices created during the downstroke, indicating that they may operate at Reynolds numbers sufficiently low to exploit a key mechanism typical of insect hovering. Hummingbird hovering approaches that of insects, yet remains distinct because of effects resulting from an inherently dissimilar—avian—body plan

    Consensus on circulatory shock and hemodynamic monitoring. Task force of the European Society of Intensive Care Medicine.

    Get PDF
    OBJECTIVE: Circulatory shock is a life-threatening syndrome resulting in multiorgan failure and a high mortality rate. The aim of this consensus is to provide support to the bedside clinician regarding the diagnosis, management and monitoring of shock. METHODS: The European Society of Intensive Care Medicine invited 12 experts to form a Task Force to update a previous consensus (Antonelli et al.: Intensive Care Med 33:575-590, 2007). The same five questions addressed in the earlier consensus were used as the outline for the literature search and review, with the aim of the Task Force to produce statements based on the available literature and evidence. These questions were: (1) What are the epidemiologic and pathophysiologic features of shock in the intensive care unit ? (2) Should we monitor preload and fluid responsiveness in shock ? (3) How and when should we monitor stroke volume or cardiac output in shock ? (4) What markers of the regional and microcirculation can be monitored, and how can cellular function be assessed in shock ? (5) What is the evidence for using hemodynamic monitoring to direct therapy in shock ? Four types of statements were used: definition, recommendation, best practice and statement of fact. RESULTS: Forty-four statements were made. The main new statements include: (1) statements on individualizing blood pressure targets; (2) statements on the assessment and prediction of fluid responsiveness; (3) statements on the use of echocardiography and hemodynamic monitoring. CONCLUSIONS: This consensus provides 44 statements that can be used at the bedside to diagnose, treat and monitor patients with shock

    Large-Range Movements of Neotropical Orchid Bees Observed via Radio Telemetry

    Get PDF
    Neotropical orchid bees (Euglossini) are often cited as classic examples of trapline-foragers with potentially extensive foraging ranges. If long-distance movements are habitual, rare plants in widely scattered locations may benefit from euglossine pollination services. Here we report the first successful use of micro radio telemetry to track the movement of an insect pollinator in a complex and forested environment. Our results indicate that individual male orchid bees (Exaerete frontalis) habitually use large rainforest areas (at least 42–115 ha) on a daily basis. Aerial telemetry located individuals up to 5 km away from their core areas, and bees were often stationary, for variable periods, between flights to successive localities. These data suggest a higher degree of site fidelity than what may be expected in a free living male bee, and has implications for our understanding of biological activity patterns and the evolution of forest pollinators

    A review of elliptical and disc galaxy structure, and modern scaling laws

    Full text link
    A century ago, in 1911 and 1913, Plummer and then Reynolds introduced their models to describe the radial distribution of stars in `nebulae'. This article reviews the progress since then, providing both an historical perspective and a contemporary review of the stellar structure of bulges, discs and elliptical galaxies. The quantification of galaxy nuclei, such as central mass deficits and excess nuclear light, plus the structure of dark matter halos and cD galaxy envelopes, are discussed. Issues pertaining to spiral galaxies including dust, bulge-to-disc ratios, bulgeless galaxies, bars and the identification of pseudobulges are also reviewed. An array of modern scaling relations involving sizes, luminosities, surface brightnesses and stellar concentrations are presented, many of which are shown to be curved. These 'redshift zero' relations not only quantify the behavior and nature of galaxies in the Universe today, but are the modern benchmark for evolutionary studies of galaxies, whether based on observations, N-body-simulations or semi-analytical modelling. For example, it is shown that some of the recently discovered compact elliptical galaxies at 1.5 < z < 2.5 may be the bulges of modern disc galaxies.Comment: Condensed version (due to Contract) of an invited review article to appear in "Planets, Stars and Stellar Systems"(www.springer.com/astronomy/book/978-90-481-8818-5). 500+ references incl. many somewhat forgotten, pioneer papers. Original submission to Springer: 07-June-201

    Time-varying wing-twist improves aerodynamic efficiency of forward flight in butterflies

    Get PDF
    PMC3547021Insect wings can undergo significant chordwise (camber) as well as spanwise (twist) deformation during flapping flight but the effect of these deformations is not well understood. The shape and size of butterfly wings leads to particularly large wing deformations, making them an ideal test case for investigation of these effects. Here we use computational models derived from experiments on free-flying butterflies to understand the effect of time-varying twist and camber on the aerodynamic performance of these insects. High-speed videogrammetry is used to capture the wing kinematics, including deformation, of a Painted Lady butterfly (Vanessa cardui) in untethered, forward flight. These experimental results are then analyzed computationally using a high-fidelity, three-dimensional, unsteady Navier-Stokes flow solver. For comparison to this case, a set of non-deforming, flat-plate wing (FPW) models of wing motion are synthesized and subjected to the same analysis along with a wing model that matches the time-varying wing-twist observed for the butterfly, but has no deformation in camber. The simulations show that the observed butterfly wing (OBW) outperforms all the flat-plate wings in terms of usable force production as well as the ratio of lift to power by at least 29% and 46%, respectively. This increase in efficiency of lift production is at least three-fold greater than reported for other insects. Interestingly, we also find that the twist-only-wing (TOW) model recovers much of the performance of the OBW, demonstrating that wing-twist, and not camber is key to forward flight in these insects. The implications of this on the design of flapping wing micro-aerial vehicles are discussed.JH Libraries Open Access Fun

    Development of microsatellite markers for identifying Brazilian Coffea arabica varieties

    Get PDF
    Microsatellite markers, also known as SSRs (Simple Sequence Repeats), have proved to be excellent tools for identifying variety and determining genetic relationships. A set of 127 SSR markers was used to analyze genetic similarity in twenty five Coffea arabica varieties. These were composed of nineteen commercially important Brazilians and six interspecific hybrids of Coffea arabica, Coffea canephora and Coffealiberica. The set used comprised 52 newly developed SSR markers derived from microsatellite enriched libraries, 56 designed on the basis of coffee SSR sequences available from public databases, 6 already published, and 13 universal chloroplast microsatellite markers. Only 22 were polymorphic, these detecting 2-7 alleles per marker, an average of 2.5. Based on the banding patterns generated by polymorphic SSR loci, the set of twenty-five coffee varieties were clustered into two main groups, one composed of only Brazilian varieties, and the other of interspecific hybrids, with a few Brazilians. Color mutants could not be separated. Clustering was in accordance with material genealogy thereby revealing high similarity
    corecore