1,076 research outputs found
Outcomes For Street Children and Youth Under Multidisciplinary Care in a Drop-In Centre in Tegucigalpa, Honduras
BACKGROUND: There is little evidence to describe the feasibility and outcomes of services for the care of street children and youth in low-income countries. AIMS: To describe the outcomes of a multidisciplinary case management approach delivered in a drop-in centre for street children and youth. METHODS: A longitudinal study of street children and youth followed in an urban drop-in centre. Four hundred (400) street children and youth received a multidisciplinary case management therapeutic package based on the community reinforcement approach. The main outcomes were changes in psychological distress, substance abuse and social situation scores. RESULTS: The median follow-up time for the cohort was 18 months. There were reductions in the levels of psychological distress (p = 0.0001) and substance abuse (p ≤ 0.0001) in the cohort as well as an improvement in the social situation of street children and youth (p = 0.0001). There was a main effect of gender (p < 0.001) and a significant interaction of gender over time (p < 0.001) on improvements in levels of psychological distress. Survival analysis showed that the probability of remaining on substances at 12 months was 0.76 (95% CI: 0.69-0.81) and 0.51 (95% CI: 0.42-0.59) at 24 months. At 12 months, fewer female patients remained using substances compared to male (p < 0.01). CONCLUSION: To be most effective, programmes and strategies for children and youth in street situations in developing countries should target both their health and social needs
Galactic cold dark matter as a Bose-Einstein condensate of WISPs
We propose here the dark matter content of galaxies as a cold bosonic fluid
composed of Weakly Interacting Slim Particles (WISPs), represented by spin-0
axion-like particles and spin-1 hidden bosons, thermalized in the Bose-Einstein
condensation state and bounded by their self-gravitational potential. We
analyze two zero-momentum configurations: the polar phases in which spin
alignment of two neighbouring particles is anti-parallel and the ferromagnetic
phases in which every particle spin is aligned in the same direction. Using the
mean field approximation we derive the Gross-Pitaevskii equations for both
cases, and, supposing the dark matter to be a polytropic fluid, we describe the
particles density profile as Thomas-Fermi distributions characterized by the
halo radii and in terms of the scattering lengths and mass of each particle. By
comparing this model with data obtained from 42 spiral galaxies and 19 Low
Surface Brightness (LSB) galaxies, we constrain the dark matter particle mass
to the range and we find the lower bound for the
scattering length to be of the order .Comment: 13 pages; 6 figures; references added; v.3: typo corrected in the
abstract, published in JCA
Dark energy, non-minimal couplings and the origin of cosmic magnetic fields
In this work we consider the most general electromagnetic theory in curved
space-time leading to linear second order differential equations, including
non-minimal couplings to the space-time curvature. We assume the presence of a
temporal electromagnetic background whose energy density plays the role of dark
energy, as has been recently suggested. Imposing the consistency of the theory
in the weak-field limit, we show that it reduces to standard electromagnetism
in the presence of an effective electromagnetic current which is generated by
the momentum density of the matter/energy distribution, even for neutral
sources. This implies that in the presence of dark energy, the motion of
large-scale structures generates magnetic fields. Estimates of the present
amplitude of the generated seed fields for typical spiral galaxies could reach
G without any amplification. In the case of compact rotating objects,
the theory predicts their magnetic moments to be related to their angular
momenta in the way suggested by the so called Schuster-Blackett conjecture.Comment: 5 pages, no figure
Evolution of the differential transverse momentum correlation function with centrality in Au+Au collisions at GeV
We present first measurements of the evolution of the differential transverse
momentum correlation function, {\it C}, with collision centrality in Au+Au
interactions at GeV. {\it C} exhibits a strong dependence
on collision centrality that is qualitatively similar to that of number
correlations previously reported. We use the observed longitudinal broadening
of the near-side peak of {\it C} with increasing centrality to estimate the
ratio of the shear viscosity to entropy density, , of the matter formed
in central Au+Au interactions. We obtain an upper limit estimate of
that suggests that the produced medium has a small viscosity per unit entropy.Comment: 7 pages, 4 figures, STAR paper published in Phys. Lett.
Single Spin Asymmetry in Polarized Proton-Proton Elastic Scattering at GeV
We report a high precision measurement of the transverse single spin
asymmetry at the center of mass energy GeV in elastic
proton-proton scattering by the STAR experiment at RHIC. The was measured
in the four-momentum transfer squared range \GeVcSq, the region of a significant interference between the
electromagnetic and hadronic scattering amplitudes. The measured values of
and its -dependence are consistent with a vanishing hadronic spin-flip
amplitude, thus providing strong constraints on the ratio of the single
spin-flip to the non-flip amplitudes. Since the hadronic amplitude is dominated
by the Pomeron amplitude at this , we conclude that this measurement
addresses the question about the presence of a hadronic spin flip due to the
Pomeron exchange in polarized proton-proton elastic scattering.Comment: 12 pages, 6 figure
Longitudinal double-spin asymmetry and cross section for inclusive neutral pion production at midrapidity in polarized proton collisions at sqrt(s) = 200 GeV
We report a measurement of the longitudinal double-spin asymmetry A_LL and
the differential cross section for inclusive Pi0 production at midrapidity in
polarized proton collisions at sqrt(s) = 200 GeV. The cross section was
measured over a transverse momentum range of 1 < p_T < 17 GeV/c and found to be
in good agreement with a next-to-leading order perturbative QCD calculation.
The longitudinal double-spin asymmetry was measured in the range of 3.7 < p_T <
11 GeV/c and excludes a maximal positive gluon polarization in the proton. The
mean transverse momentum fraction of Pi0's in their parent jets was found to be
around 0.7 for electromagnetically triggered events.Comment: 6 pages, 3 figures, submitted to Phys. Rev. D (RC
High non-photonic electron production in + collisions at = 200 GeV
We present the measurement of non-photonic electron production at high
transverse momentum ( 2.5 GeV/) in + collisions at
= 200 GeV using data recorded during 2005 and 2008 by the STAR
experiment at the Relativistic Heavy Ion Collider (RHIC). The measured
cross-sections from the two runs are consistent with each other despite a large
difference in photonic background levels due to different detector
configurations. We compare the measured non-photonic electron cross-sections
with previously published RHIC data and pQCD calculations. Using the relative
contributions of B and D mesons to non-photonic electrons, we determine the
integrated cross sections of electrons () at 3 GeV/10 GeV/ from bottom and charm meson decays to be = 4.0({\rm
stat.})({\rm syst.}) nb and =
6.2({\rm stat.})({\rm syst.}) nb, respectively.Comment: 17 pages, 17 figure
Longitudinal scaling property of the charge balance function in Au + Au collisions at 200 GeV
We present measurements of the charge balance function, from the charged
particles, for diverse pseudorapidity and transverse momentum ranges in Au + Au
collisions at 200 GeV using the STAR detector at RHIC. We observe that the
balance function is boost-invariant within the pseudorapidity coverage [-1.3,
1.3]. The balance function properly scaled by the width of the observed
pseudorapidity window does not depend on the position or size of the
pseudorapidity window. This scaling property also holds for particles in
different transverse momentum ranges. In addition, we find that the width of
the balance function decreases monotonically with increasing transverse
momentum for all centrality classes.Comment: 6 pages, 3 figure
Energy and system size dependence of \phi meson production in Cu+Cu and Au+Au collisions
We study the beam-energy and system-size dependence of \phi meson production
(using the hadronic decay mode \phi -- K+K-) by comparing the new results from
Cu+Cu collisions and previously reported Au+Au collisions at \sqrt{s_NN} = 62.4
and 200 GeV measured in the STAR experiment at RHIC. Data presented are from
mid-rapidity (|y|<0.5) for 0.4 < pT < 5 GeV/c. At a given beam energy, the
transverse momentum distributions for \phi mesons are observed to be similar in
yield and shape for Cu+Cu and Au+Au colliding systems with similar average
numbers of participating nucleons. The \phi meson yields in nucleus-nucleus
collisions, normalised by the average number of participating nucleons, are
found to be enhanced relative to those from p+p collisions with a different
trend compared to strange baryons. The enhancement for \phi mesons is observed
to be higher at \sqrt{s_NN} = 200 GeV compared to 62.4 GeV. These observations
for the produced \phi(s\bar{s}) mesons clearly suggest that, at these collision
energies, the source of enhancement of strange hadrons is related to the
formation of a dense partonic medium in high energy nucleus-nucleus collisions
and cannot be alone due to canonical suppression of their production in smaller
systems.Comment: 20 pages and 5 figure
- …