2,176 research outputs found

    Scalings for unsteady natural convection boundary layer under time-varying heating flux in a small Prandtl number fluid

    Get PDF
    The unsteady natural convection boundary layer (NCBL) on a vertical wall heated by time varying flux in initially quiescent homogeneous fluid with a small Prandtl number (Pr) was studied. Scalings for the parameters typifying NCBL behavior, including plate temperature, maximum vertical velocity, thermal boundary-layer thickness, and velocity boundary-layer thickness, at different development stages, and the time for the transition from the start-up stage to the quasi-steady state, were developed by scaling analysis. The obtained scalings were compared to and validated by the numerical results with different values of Pr, the Rayleigh number Ra and the dimensionless time-varying heat flux frequency fn, over 106 ≀ Ra ≀ 109, 0.01 ≀ Pr ≀ 0.5, and 0.001 ≀ fn ≀ 0.025. It is also found that the development of the boundary layer at the start-up stage is one-dimensional and but becomes two-dimensional at the quasi-steady state

    Uniqueness of Self-Similar Asymptotically Friedmann-Robertson-Walker Spacetime in Brans-Dicke theory

    Full text link
    We investigate spherically symmetric self-similar solutions in Brans-Dicke theory. Assuming a perfect fluid with the equation of state p=(γ−1)ÎŒ(1≀γ<2)p=(\gamma-1)\mu (1 \le \gamma<2), we show that there are no non-trivial solutions which approach asymptotically to the flat Friedmann-Robertson-Walker spacetime if the energy density is positive. This result suggests that primordial black holes in Brans-Dicke theory cannot grow at the same rate as the size of the cosmological particle horizon.Comment: Revised version, 4 pages, no figures, Revtex, accepted for publication in Physical Review

    Information Recovery From Black Holes

    Get PDF
    We argue that if black hole entropy arises from a finite number of underlying quantum states, then any particular such state can be identified from infinity. The finite density of states implies a discrete energy spectrum, and, in general, such spectra are non-degenerate except as determined by symmetries. Therefore, knowledge of the precise energy, and of other commuting conserved charges, determines the quantum state. In a gravitating theory, all conserved charges including the energy are given by boundary terms that can be measured at infinity. Thus, within any theory of quantum gravity, no information can be lost in black holes with a finite number of states. However, identifying the state of a black hole from infinity requires measurements with Planck scale precision. Hence observers with insufficient resolution will experience information loss.Comment: First prize in the Gravity Research Foundation Essay Competition, 8 pages, Late

    Low-temperature electron dephasing time in AuPd revisited

    Full text link
    Ever since the first discoveries of the quantum-interference transport in mesoscopic systems, the electron dephasing times, τϕ\tau_\phi, in the concentrated AuPd alloys have been extensively measured. The samples were made from different sources with different compositions, prepared by different deposition methods, and various geometries (1D narrow wires, 2D thin films, and 3D thickfilms) were studied. Surprisingly, the low-temperature behavior of τϕ\tau_\phi inferred by different groups over two decades reveals a systematic correlation with the level of disorder of the sample. At low temperatures, where τϕ\tau_\phi is (nearly) independent of temperature, a scaling τϕmax∝D−α\tau_\phi^{\rm max} \propto D^{-\alpha} is found, where tauϕmaxtau_\phi^{\rm max} is the maximum value of τϕ\tau_\phi measured in the experiment, DD is the electron diffusion constant, and the exponent α\alpha is close to or slightly larger than 1. We address this nontrivial scaling behavior and suggest that the most possible origin for this unusual dephasing is due to dynamical structure defects, while other theoretical explanations may not be totally ruled out.Comment: to appear in Physica E, Proceedings for the International Seminar and Workshop "Quantum Coherence, Noise, and Decoherence in Nanostructures", 15-26 May 2006, Dresde

    Determining replenishment lot size and shipment policy for an extended EPQ model with delivery and quality assurance issues

    Get PDF
    AbstractThis paper derives the optimal replenishment lot size and shipment policy for an Economic Production Quantity (EPQ) model with multiple deliveries and rework of random defective items. The classic EPQ model assumes a continuous inventory issuing policy for satisfying demand and perfect quality for all items produced. However, in a real life vendor–buyer integrated system, multi-shipment policy is practically used in lieu of continuous issuing policy and generation of defective items is inevitable. It is assumed that the imperfect quality items fall into two groups: the scrap and the rework-able items. Failure in repair exists, hence additional scrap items generated. The finished items can only be delivered to customers if the whole lot is quality assured at the end of rework. Mathematical modeling is used in this study and the long-run average production–inventory-delivery cost function is derived. Convexity of the cost function is proved by using the Hessian matrix equations. The closed-form optimal replenishment lot size and optimal number of shipments that minimize the long-run average costs for such an EPQ model are derived. Special case is examined, and a numerical example is provided to show its practical usage

    Multisensor 3D posture determination of a mobile robot using inertial and ultrasonic sensors

    Get PDF
    This paper presents methodologies and techniques for fusing inertial and ultrasonic sensors to estimate the current posture of a mobile robot navigating over indoor uneven terrain. This new type of pose tracking system is developed by means of fusing an inertial navigation subsystem (INS) and an ultrasonic localization subsystem. Extended Kalman filtering (EKF)-based algorithm for integrating both the subsystems is proposed to obtain reliable attitude and position estimates of the vehicle and to eliminate the accumulation errors caused by wheel slippage and surface roughness. Experimental results are conducted to illustrate feasibility and effectiveness of the proposed system and method

    Remarks on 't Hooft's Brick Wall Model

    Get PDF
    A semi-classical reasoning leads to the non-commutativity of the space and time coordinates near the horizon of Schwarzschild black hole. This non-commutativity in turn provides a mechanism to interpret the brick wall thickness hypothesis in 't Hooft's brick wall model as well as the boundary condition imposed for the field considered. For concreteness, we consider a noncommutative scalar field model near the horizon and derive the effective metric via the equation of motion of noncommutative scalar field. This metric displays a new horizon in addition to the original one associated with the Schwarzschild black hole. The infinite red-shifting of the scalar field on the new horizon determines the range of the noncommutativ space and explains the relevant boundary condition for the field. This range enables us to calculate the entropy of black hole as proportional to the area of its original horizon along the same line as in 't Hooft's model, and the thickness of the brick wall is found to be proportional to the thermal average of the noncommutative space-time range. The Hawking temperature has been derived in this formalism. The study here represents an attempt to reveal some physics beyond the brick wall model.Comment: RevTeX, 5 pages, no figure

    Second-trimester Maternal Serum Quadruple Test for Down Syndrome Screening: A Taiwanese Population-based Study

    Get PDF
    SummaryObjectiveTo assess the usefulness of quadruple test screening for Down syndrome in Taiwan.Materials and MethodsMaternal serum concentrations of a-fetoprotein, human chorionic gonadotropin, unconjugated estriol, and inhibin A were measured in 21,481 pregnant women from 15 to 20 weeks of gestation.ResultsOf the 21,481 women, 977 returned values greater than the high-risk cut-off value (1 in 270). Most of these women (86.2%) decided to have an invasive procedure for genetic diagnosis. Nine cases of Down syndrome and 19 cases of other chromosomal anomalies were detected prenatally. Two children with Down syndrome were diagnosed after delivery even though a low estimated risk was determined following the quadruple test. The detection rate was 81.8% (nine out of 11 cases), with a 4.4% false-positive rate. The median multiple of the median value for a-fetoprotein, human chorionic gonadotropin, unconjugated estriol and inhibin A were 0.87, 2.34, 0.77 and 2.16, respectively, in affected cases.ConclusionThis is the first study of the quadruple test for Down syndrome in a Chinese population. Our findings suggested that the second-trimester quadruple test provides an effective screening tool for Down syndrome in Taiwan

    Predictions for B→KγγB \to K \gamma \gamma decays

    Full text link
    We present a phenomenological study of the rare double radiative decay B→KγγB\to K \gamma\gamma in the Standard Model (SM) and beyond. Using the operator product expansion (OPE) technique, we estimate the short-distance (SD) contribution to the decay amplitude in a region of the phase space which is around the point where all decay products have energy ∌mb/3\sim m_b/3 in the rest frame of the BB-meson. At lowest order in 1/Q, where QQ is of order mbm_b, the B→KγγB\to K \gamma\gamma matrix element is then expressed in terms of the usual B→KB\to K form factors known from semileptonic rare decays. The integrated SD branching ratio in the SM in the OPE region turns out to be ΔB(B→Kγγ)SMOPE≃1×10−9\Delta {\cal{B}}(B \to K \gamma \gamma)_{SM}^{OPE} \simeq 1 \times 10^{-9}. We work out the di-photon invariant mass distribution with and without the resonant background through B→K{ηc,χc0}→KγγB\to K \{\eta_c,\chi_{c0}\}\to K\gamma \gamma. In the SM, the resonance contribution is dominant in the region of phase space where the OPE is valid. The present experimental upper limit on Bs→τ+τ−B_s \to \tau^+ \tau^- decays, which constrains the scalar/pseudoscalar Four-Fermi operators with τ+τ−\tau^+ \tau^-, leaves considerable room for new physics in the one-particle-irreducible contribution to B→KγγB\to K \gamma \gamma decays. In this case, we find that the SD B→KγγB\to K \gamma \gamma branching ratio can be enhanced by one order of magnitude with respect to its SM value and the SD contribution can lie outside of the resonance peaks.Comment: 17 pages, 4 figures; Note added on Schouten identity and 2 references added; v4: typos in Eqs (8), (44) and erroneous statement on mixing before Eq (44) fixed. All results and conclusions unchange

    A bayesian multilevel modeling approach for data query in wireless sensor networks

    Get PDF
    In power-limited Wireless Sensor Network (WSN), it is important to reduce the communication load in order to achieve energy savings. This paper applies a novel statistic method to estimate the parameters based on the realtime data measured by local sensors. Instead of transmitting large real-time data, we proposed to transmit the small amount of dynamic parameters by exploiting both temporal and spatial correlation within and between sensor clusters. The temporal correlation is built on the level-1 Bayesian model at each sensor to predict local readings. Each local sensor transmits their local parameters learned from historical measurement data to their cluster heads which account for the spatial correlation and summarize the regional parameters based on level-2 Bayesian model. Finally, the cluster heads transmit the regional parameters to the sink node. By utilizing this statistical method, the sink node can predict the sensor measurements within a specified period without directly communicating with local sensors. We show that this approach can dramatically reduce the amount of communication load in data query applications and achieve significant energy savings
    • 

    corecore