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Abstract We argue that if black hole entropy arises from a finite number of
underlying quantum states, then any particular such state can be identified from
infinity. The finite density of states implies a discrete energy spectrum, and, in
general, such spectra are non-degenerate except as determined by symmetries.
Therefore, knowledge of the precise energy, and of other commuting conserved
charges, determines the quantum state. In a gravitating theory, all conserved
charges including the energy are given by boundary terms that can be measured
at infinity. Thus, within any theory of quantum gravity, no information can be
lost in black holes with a finite number of states. However, identifying the state
of a black hole from infinity requires measurements with Planck scale precision.
Hence observers with insufficient resolution will experience information loss.
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1 Introduction

There are two central questions concerning the quantum physics of black holes.
First, why do classical black holes apparently have a finite entropy equal to a
quarter of the horizon area? Second, does information escape from an evapo-
rating black hole, and if so, how? One might suppose that the answers to these
two questions would require separate inputs from new physics. However, here
we argue that any quantum mechanical theory of gravity that explains the finite
entropy of black holes as the coarse grained description of a large number of
microstates must also permit measurement of these states at infinity.

The basic argument is simple. If a black hole represents a finite number of
states, N ∼ eSBH , then the energy spectrum of the black hole must be discrete.
In general such discrete spectra are quantum-mechanically non-degenerate,
except as determined by symmetries of the system. Knowledge of the precise
energy, along with the other commuting conserved charges, thus determines the
quantum state. But since, in generic gravitating theories, charges (such as the
energy) are given by boundary terms, this leads to the remarkable conclusion
that complete knowledge of the black hole state is contained in the asymptotic
region.1

Below we elaborate upon this observation, and argue that the relevant
asymptotic measurements will always involve either very short distances that
vanish as h̄ → 0 or very long time scales that diverge in this limit. Either way,
a conventional local, classical observer cannot measure the internal state of a
black hole, although the information is present in the asymptotic region, and can
be measured by observers with more sensitive instruments. We also explore why
“internal observables” containing information inaccessible to the asymptotic
observer do not exist, despite their apparent presence in effective field theory.

2 Information recovery

Uncharged black holes in asymptotically flat space do not come to equilibrium
with their radiation and eventually evaporate completely. Thus, in order to dis-
cuss information recovery from black holes it is helpful to begin by placing black
holes “in a box” so that an equilibrium configuration of a black hole microstate
accompanied by a bath of radiation can exist. The covariant method of achiev-
ing this is to consider black holes in a universe with a negative cosmological
constant.

An infrared cutoff, such as the one produced by the curvature arising from
a negative cosmological constant, removes the obvious continuum in the spec-
trum of fields associated with translational symmetry. Thus, also assuming that
black holes have a finite number of microstates, the entire gravitating system

1 For some (singular) extremal black holes, this conclusion is also implied by, but not dependent
on, the recent observation that these spacetimes admit a classical moduli space of non-singular,
horizon-free supergravity microstates which respond to most probes as if they are singular black
holes [1–4].
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has a finite number of states below any energy E. Due to the rapid growth of
the Bekenstein–Hawking entropy, one expects that at sufficiently high energies
the entropy of such systems is dominated by black holes. The typical state then
involves a very heavy black hole in equilibrium with a small amount of radiation.

We will argue that complete information concerning the microstates of such
black holes is available in the asymptotic region of spacetime. The central point
is that, in a generic gravitating system, the energy is determined at infinity. As
with the familiar ADM energy in asymptotically flat spacetimes, bulk contribu-
tions to the energy vanish due to the gravitational constraints. Thus, the energy
is given entirely by a surface term.

We begin by discussing black holes in energy eigenstates. In quantum mechan-
ics, a discrete spectrum is generically non-degenerate, except as determined by
symmetries. Thus, a precise measurement of the energy (and other conserved
charges) of a black hole spacetime is sufficient to identify any particular energy
eigenstate.

However, such a measurement will require precision that grows exponen-
tially in 1/h̄. To see this, we temporarily ignore any additional conserved charges.
Let us now suppose that a measuring device with an energy resolution�E inter-
acts with a gravitating system of total energy E and entropy S(E). By the usual
statistical mechanical understanding of entropy, this means that the number of
states between E and E +�E is ∼ eS. Since our system has a non-degenerate
spectrum, the energy level spacing between E and E +�E must be

δE ∼ �E e−S . (2.1)

In the black hole dominated regime, the density of states is given by

dN
dE

≈ deSBH

dE
= eSBH

dSBH

dE
, (2.2)

where SBH, the black hole entropy, grows as some power of the energy E.
A measuring device with an energy resolution �E will interact with

N(E)�E ≈ eSBH ×�E
dSBH

dE
(2.3)

states. The associated entropy,

ln(N(E)�E) = SBH + ln(�E)+ ln

(
dSBH

dE

)
, (2.4)

is same as the entropy of the black hole up to logarithmic corrections. Thus the
coarse-grained entropy measured by a device with resolution�E will equal the
black hole entropy to leading order.

Choosing�E to be any power law in E provides a coarse-graining which gives
rise to the large entropy associated with the black hole. Nevertheless, measuring
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the energy of the state with a much greater precision δE ∼ exp(−SBH) would
determine either a single state, or a small number of degenerate states which
can be identified through measurements of other conserved charges. However,
the Heisenberg uncertainty principle dictates that any such measurement must
extend over an enormous length of time:

δt ∼ 1
δE

∼ exp(SBH). (2.5)

In the classical limit, h̄ → 0 or �p → 0, this timescale diverges exponentially
because

SBH = A
4 �2

p
+ corrections . (2.6)

The timescale (2.5) is comparable to the system’s Heisenberg recurrence time,
over which a generic state in the interval�E develops a matrix element of order
one with any other such state.2 It is also the timescale over which large thermal
fluctuations may occur, perhaps replacing the black hole by a ball of expanding
hot gas. While the the gas will re-collapse to form another black hole on a (rel-
atively) short timescale, in the meantime it is plausible that the details of the
black hole’s internal state are clearly visible from infinity. Thus, in retrospect it
is perhaps not surprising that an experiment lasting a time δt ∼ exp(SBH) can
identify the internal state of a black hole.3

We can now consider the possibility of additional conserved charges that com-
mute with the energy. Charges associated with gauge symmetries (e.g., angular
momentum, electromagnetic charges etc.) can clearly be measured at infinity
in the usual ways. While any charges that are not coupled to long range gauge
fields could result in degeneracies that cannot be disentangled, such degener-
acies will be small because representations of typical symmetry groups do not
grow exponentially quickly.4 The dominance of the energy can also be seen
from the fact that, in black hole thermodynamics, fixing both the mass M and
taking the angular momentum to vanish leads to the same entropy (to lead-
ing order) as specifying only the mass M and leaving the angular momentum
unconstrained. Thus the overwhelming majority of the information is available
at infinity in the energy spectrum.

So far we have discussed black holes in energy eigenstates. We now turn to
general superpositions

2 The importance of recurrence times in discussions of gravitational entropy has been highlighted
in, e.g., [5–10]. The Heisenberg time is discussed in [10].
3 It has been shown that the states of certain (singular) black holes can be detected by asymptotic
measurements made over such exponentially long timescales [4].
4 In fact, such charges can sometimes be measured from infinity. Examples include the asymp-
totic detection of black hole “hair” arising from underlying discrete symmetries (e.g. [11]), super-
symmetry [4] and integrability [12].
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|ψ〉 =
∑

n

an|En〉 . (2.7)

As is always the case for quantum systems, one cannot experimentally deter-
mine the values of all the coefficients an given only a single black hole on which
to perform measurements. Thus, to demonstrate whether the information is
available at infinity, we should ask whether one can measure the an to arbitrary
accuracy given a large number of black holes prepared identically in the state
|ψ〉. The frequency with which measurement of the energy gives the result En
yields the magnitudes |an|2. What remains is to obtain phase information. As
usual, phase information can be associated to measurement of an operator B
which does not commute with the energy, i.e., time-dependent operators. Exam-
ples of such observables are boundary values of fields at asymptotic infinity.

For simplicity, let us choose the state |ψ〉 to be a superposition of only two
energy eigenstates |ψ〉 = a1|E1〉 + a2|E2〉. If we now repeatedly measure the
value of B we obtain its eigenvalues Bn with some frequency. Consider two such
eigenvalues B1 and B2 and the associated eigenstates

|B1〉 =
∑

n

b1,n|En〉 ,

(2.8)
|B2〉 =

∑
n

b2,n|En〉 .

The coefficients bm,n are determined by the underlying theory; we take to be
known quantities. The relative frequencies of measurement of B1 and B2 are
determined by the overlaps

|〈B1|ψ〉|2 = |a1 b1,1 + a2 b1,2|2
(2.9)|〈B2|ψ〉|2 = |a1 b2,1 + a2 b2,2|2.

The ratio of these two frequencies depends on both the magnitudes and the
phases of a1 and a2. The phase dependence arises because [B, H] �= 0 and
therefore the bi,j are generically non-zero. Since the bi,j are known, and the
magnitudes |ai| were already determined by measurements of the energy, the
relative frequency of B1 and B2 allows us to ascertain the relative phase of a1
and a2. For a more general superposition |ψ〉, repeating similar measurements
fully determines the ray in Hilbert space. In this sense, full information about
the microstate is available outside the black hole.5

The chief difficulty in extending the above reasoning to asymptotically flat
spacetime is that the translational symmetry results in continuous spectra. We

5 The picture of information recovery offered here differs significantly from the idea explored in
[5,13,8–10] that a summation over multiple classical saddle points with the same asymptotic bound-
ary conditions might allow for information recovery. Indeed, [8–10] showed in explicit examples that
this mechanism was insufficient. Rather, our perspective is consistent with [3], where information
is lost simply by the erasure of quantum mechanical detail in semiclassical measurements.
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will nevertheless assume that it is possible to interpret the entropy of a black
hole in asymptotically flat space in terms of a finite number of microstates,
perhaps by explicitly considering a black hole in a box, or by otherwise restrict-
ing attention to the local region surrounding the black hole. In this region we
can consider both the black hole and the thermal atmosphere that it generates
as it evaporates. Within this framework, there should be an approximate notion
of energy and we should again expect it to have a discrete, non-degenerate
spectrum. Given this discreteness, measurements analogous to those described
above will identify the black hole microstates.

3 The absence of an unobservable interior

We have argued that, in any quantum mechanical theory of gravity in which
black holes have a finite number of internal states, one expects all information
about the state to be available near infinity. This conclusion can be stated in
terms of the commutator of operators: because the spectrum of the Hamilto-
nian is non-degenerate, all observables which commute with the Hamiltonian
are in fact functions of the Hamiltonian itself.

There may appear to be a tension between this observation and the fact that,
in classical general relativity, there are independent observables localized inside
the black hole. Because the interior is causally separated from infinity, such ob-
servables commute with all asymptotic quantities. However, in our picture this
is an artifact of the strict classical limit. Recall that the classical description of
black holes in the h̄ → 0 limit replaces very long time-scales of order e1/h̄ by
infinity. Thus probe measurements of the sort necessary to resolve the states
of a black hole are unavailable in the classical limit. As such, the usual picture
of the black hole with a causally disconnected interior is the correct effective
classical description. Even when h̄ �= 0 this remains the effective description for
semiclassical observers lacking the measurement precision necessary to resolve
the microstates.

Similarly, one can readily imagine that for some class of operators {O}, the
commutators with Hamiltonian H simply vanish rapidly in the classical limit,
leading to an approximate notion of a causally separated region. However, in
our picture none of these commutators vanishes exactly for h̄ �= 0. How might
this be explained in semiclassical terms? Consider local quantum field theory
on a fixed black hole spacetime. In this context, there are observables L that
are localized inside the black hole. To promote these operators to observables
in quantum gravity one must make them diffeomorphism invariant. Procedures
to achieve this, such as integrating L suitably over spacetime, generally lead
to non-local operators which, when evaluated on particular spacetimes, receive
contributions only from a small region [14]. In the classical limit this region
will be contained inside the horizon. However, at finite h̄ there is always some
spread, which plausibly leads to non-vanishing commutators with operators
near infinity. This may be related to rare large fluctuations of the black hole to
a thermal-gas like state which are expected over the recurrence time (2.5) and
which cause the horizon to be ill-defined when h̄ �= 0.
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4 Discussion

We have argued that if black hole entropy arises from a finite number of under-
lying quantum states, then, in any quantum mechanical theory of gravity, the
information needed to identify a particular microstate is available at infinity.
We used the fact that, in a generic gravitating theory, the energy is given by
a surface term at infinity. While new physics is needed to explain why a given
black holes is associated with a finite number of states, no further new physics
is required to make information about black hole states available at infinity.

Although the information is available in our sense, there may be practical
or even in-principle limitations to recovery of the information by a physical
apparatus. For example, in asymptotically flat space, one must also deal with
the fact that black holes represent broad resonances as opposed to sharp energy
eigenstates [15]. Even for stable black holes it is clear that, in order to sepa-
rate black hole microstates, a measurement apparatus will itself require a large
number of internal states.6 In order to minimize back-reaction of such a system,
one would need to either dilute it in space, or move it far away. Either way, the
interactions of the apparatus with the black hole would be weakened, making
the practical task of state identification more difficult.
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