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Abstract. This paper presents methodologies and techniques for fusing inertial and ultrasonic sen-
sors to estimate the current posture of a mobile robot navigating over indoor uneven terrain. This
new type of pose tracking system is developed by means of fusing an inertial navigation subsystem
(INS) and an ultrasonic localization subsystem. Extended Kalman filtering (EKF)-based algorithm
for integrating both the subsystems is proposed to obtain reliable attitude and position estimates of
the vehicle and to eliminate the accumulation errors caused by wheel slippage and surface roughness.
Experimental results are conducted to illustrate feasibility and effectiveness of the proposed system
and method.
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1. Introduction

Over the decades, mobile robots have already found widespread applications in
automated factories, offices, hospitals and warehouses. Mobile robots are also be-
coming increasingly important in areas where work is hazardous to humans. These
areas include mining, explosive and toxic material handling, and nuclear power
plant operations. More significant research efforts are underway for using mobile
robots to perform more complicated missions in military, space exploration and
human service applications. In these applications, the posture determination or
localization capability of mobile robots is extremely important for free-ranging
path tracking as well as reactive navigation in any given environment (Leonard
and Durrant-Whyte, 1992; Maksarov and Durrant-Whyte, 1995; Fujisawa et al.,
2001). The posture determination technology for mobile robots means to calculate
its current position and orientation with respect to a given inertial reference frame
(Borenstein et al., 1996; Drumheller, 1987). For this purpose, many multisensorial
2D dead-reckoning (DR) approaches have been successfully applied to determine
the current postures of mobile robots navigating at a flat floor and traveling over
short distances (Tsai, 1998). However, the detrimental factors, such as slippage,
surface roughness and misalignment of wheels, cause the accumulation errors of
these dead-reckoning methods to grow without bounds. Moreover, such methods
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cannot be directly applicable to the vehicle traveling over any steep gradient and
undulating terrain (Song and Suen, 1996). A 3D dead-reckoning (DR) method has
been proposed by Lai (2000) to overcome such shortcomings. However, if the
traveling terrain is irregularly uneven, this type of 3D DR approach may quickly
fail to keep track of its postures even over short distances (Kim et al., 1995).

The paper aims at developing a new indoor 3D posture determination system
of the robot based on both inertial and ultrasonic measurements (Figueroa and
Mahajan, 1994). This posture tracking system is expected to be suitable for every
mobile vehicle traveling over indoor uneven terrain. This novel system is composed
of an inertial navigation subsystem (INS) and an ultrasonic localization subsystem.
The proposed inertial navigation system is an alternative sophisticated implemen-
tation of internal navigation system, which particularly uses inertial sensors such as
gyroscopes, speedometers, and accelerometers to measure the angular velocity, the
linear velocity and acceleration with respect to the inertial frame. The gyroscopic
angular velocity can be integrated to provide the attitude for the robot, the linear
acceleration from accelerometers can be integrated to provide the velocity, and the
linear velocity from speedometers can be integrated to provide the distance for the
robots. Consequently, the type of inertial navigation system is regarded as a self-
contained, nonradiating, high-precision and short time-duration navigation system.
This technique is expected to effectively eliminate the errors caused by wheel slip-
page and surface roughness (Barshan and Durrant-Whyte, 1994; Mae et al., 2001).
Like the DR method, the navigation errors in an INS have a tendency to increase
with time due to noise input and the drifts of the inertial sensors. The fundamental
error sources contained in gyroscope and accelerometer measurements affect the
accuracy of an INS over long traveling distances. Fortunately, such errors can be
eliminated by using a 3D ultrasonic localization system proposed by Tsai et al.
(2003). The position calibration capability of the 3D ultrasonic localization system
has been proven useful in providing the robot’s posture in a small limited area
quickly, accurately and inexpensively. Thus, the INS can be adopted for supplying
the information of vehicle maneuvering in the absence of ultrasonic signals, and
the 3D ultrasonic localization system mounted at many specified locations is used
to compensate for the long-distance accumulated errors when the vehicles are pass-
ing through the designated regions (Figueroa and Mahajan, 1994; Sabatini, 1995).
The INS together with the ultrasonic system is capable of building an alternative
integrated navigation system for three-dimensional vehicle navigation over indoor
uneven terrain.

In this paper, an integration method, previously appeared in (Maybeck, 1979;
Kim et al., 1995; Wang et al., 2003), will be applied to the new integrated system.
This method is expected to address the problem of the 3D posture determination for
a mobile robot in the absence of wheel encoder or odometer information, assuming
that the robot has pneumatic tires without suspension and runs over a road surface
at speeds below 1 m/sec in any given indoor uneven terrain. To make best use of
low-cost inertial sensing systems, we use two types of Kalman filters; one is for the
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INS, and the other is for the INS with ultrasonic localization system (Vaganay et al.,
1993; Triggs, 1994; Foxlin, 2002). This type of hardware implementation for the
integrated system reduces the computing loads and increases the positioning ac-
curacy (Sorenson, 1990; Maybeck, 1979). Figure 1 shows a block diagram of the
integrated system.

The remainder of the paper is organized as follows. Section 2 briefly describes
the posture determination system. The multisensorial INS subsystem is developed
in Section 3. Section 4 explores how to use the Extended Kalman filtering to
fuse the INS and ultrasonic temporal data. Two experiments are described which
have been performed in Section 5 to verify the accuracy and performance of the
proposed method. Section 6 concludes the paper.

2. System Configuration

Figure 2 displays the physical configuration of the multisensorial INS subsystem
mounted on a laboratory-based autonomous mobile robot, having two indepen-
dently driving front wheels and two freely rotating back wheels. The multisensorial
INS subsystem is constructed by using three gyroscopes, one speedometer, and
one triaxial accelerometer and two high-resolution optical incremental shaft en-
coders mounted on the front driving wheels. Two optical incremental encoders are
employed as a speedometer for computing the velocity of the robot. The digital
fluxgate compass provides a measure of absolute robot heading by sensing and
processing the averaged strength of the earth’s magnetic field. In contrast to the
compass, the rategyro periodically produces nonjammable, relative robot heading
measurements by integrating its instantaneous angular velocity over a period. The
notebook computer system with an analog and digital signal interfacing board is
responsible for performing the sensing procedures, executing multisensorial INS
and sensor fusion algorithms and storing the results.

Figure 3 depicts the physical configuration of the novel 3D ultrasonic loca-
tion system which consists of one RF controlled ultrasonic transmitter mounted
on the known location fixed to an inertial frame of reference, and four ultrasonic
receivers and one RF controlled switch placed on the mobile robot. For the system,
an ultrasonic transmitter T5 is mounted at a known location (x5, y5, z5), and four
ultrasonic receivers having the right triangle structure are installed on the mobile
robot. The receivers’ locations are denoted byR1 = (x1, y1, z1), R2 = (x2, y2, z2),
R3 = (x3, y3, z3) and R4 = (x4, y4, z4), respectively. Moreover, let the center of
the receiver module be represented by (x, y, z), and then the positions of receivers
R1, R2, R3 and R4 are expressed by

x1 = x − d cos(60◦ − θ) = x − 0.5 · d cos θ −
√

3

2
d sin θ,

y1 = y + d sin(60◦ − θ) = y +
√

3

2
cos θ − 0.5 · d sin θ,

z1 = z,
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Figure 2. Physical configuration of a multisensorial posture determination system mounted
on a laboratory-based autonomous wheeled mobile robot.

Figure 3. Physical configuration of the proposed 3D Ultrasonic location system.

x2 = x + d cos(120◦ − θ) = x − 0.5 · d cos θ +
√

3

2
d sin θ,

y2 = y − d sin(120◦ − θ) = y −
√

3

2
cos θ − 0.5 · d sin θ,

z2 = z,

x3 = x + d cos θ, y3 = y + d sin θ, z3 = z;
x4 = x, y4 = y, z4 = z + d,
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where d represents the distance from the middle module to each receiver and θ

is the vehicle heading. The scenario for measuring the TOF data between the
ultrasonic transmitter/receiver modules is stated as follows. First, the ultrasonic
transmitter immediately sends out a modulated signal after receiving a starting
signal via the RF switch controlled by the computer. Second, each 16-bit counter
with 2 MHz counting rate accumulates the TOF data until the corresponding re-
ceiver confirms that the ultrasonic modulated signal has been received. The method
used for the TOF measurements is based on a simple threshold detection with a
time varying gain-scheduled amplifier and a capacitive charge-up circuit. Finally,
the computer reads all the TOF data via designed digital interfacing circuits and
then starts to execute the robot location determination algorithm. The whole mea-
surement process is periodically repeated and the sampling rate depends upon the
vehicle’s linear speed. Worthy of mention is that the system may fail to receive
TOF data when the robot moves out the effective coverage of the ultrasonic wave
propagation.

The attitude estimate of the vehicle relies on the measurements from the digital
compass, the liquid-filled inclinometer and the two gyros. When the vehicle is in
motion, the estimation of pitch ρ(t) is by cascading the tilt sensor, the rate gyro and
a Kalman filter. In the meantime, the determination of yaw angle θ(t) is achieved
via a combination of the compass, the rate gyro and a Kalman filter.

3. Multisensorial INS System

Inertial navigation systems are self-contained, nonradiating, nonjammable, dead-
reckoning navigation systems that provide continuous position and orientation in-
formation through direct measurements. Unlike commercially airborne INS, the
type of the proposed INS is integrated with the absolute location-sensing devices
to provide useful information about the vehicle position, the gyroscopes to provide
angular rate information, and the accelerometers to provide acceleration rate infor-
mation. The rate information together with the tilt sensors, the compass and the
speedometer gives more accurate absolute measurements of attitude and position
of the vehicle.

3.1. ROTATIONAL COORDINATE TRANSFORMATION

This subsection considers a three-dimensional coordinate transformation in which
the measurements are represented in the world frame X–Y–Z. Since the triaxial
accelerometer measurement data represents the acceleration of the robot in the
mobile robot frame Xm–Ym–Zm, a rotational transformation through Euler angles,
yaw and pitch angles, around X, Y and Z axes must be utilized to transform the
readings in the mobile moving frame Xm–Ym–Zm into those in the world frame.
Figure 4 illustrates this relationship between the mobile moving frame Xm–Ym–Zm

and the world frame X–Y–Z.
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Figure 4. Relationship between the moving frame Xm–Ym–Zm and the world frame X–Y–Z.

3.2. ACCELEROMETER TRANSFORMATION

The accelerometer mounted on the laboratory-based autonomous mobile robot is
particularly used to measure the three-dimensional local gravitational acceleration
axm(k), aym(k), azm(k) in the mobile robot frame. Hence the rotational transforma-
tion equation (1) is used to convert axm(k), aym(k), az(k), shown in Figure 5, into
ax(k), ay(k), az(k) in the world frame.

ax = axm cos θ · cos ρ − aym sin θ · cos ρ − axm sin θ · sin ρ,

ay = axm sin θ · cos θ + aym cos θ · cos ρ − axm cos θ · sin ρ,

az = axm sin ρ + aym sin θ + axm cos ρ.

(1)

Note that ax(k), ay(k) and az(k) represent the three-dimensional accelerations of
the robot in the world frame, and they are related to the measured accelerations by
a rotational transformation through the Euler angles θ , ρ around x, y and z axes,
respectively.

The velocities vx(k), vy(k), vz(k) in the world frame X–Y–Z are then approxi-
mated by

vx(k + 1) = vx(k) + �t · ax(k),

vy(k + 1) = vy(k) + �t · ay(k),

vz(k + 1) = vz(k) + �t · az(k).

(2)

3.3. VELOCITY TRANSFORMATION

The linear velocity of the vehicle is expressed using

v(t) = R

2r
(ωR(t) + ωL(t)), (3)

where r = 27 denotes the gear ratio, R = 10.75 cm represents the radius of the
drive wheels, ωR(t) and ωL(t) are the angular velocity outputs of the right and left
motors, respectively.
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Figure 5. Velocity and acceleration measurements with respect to the world frame.

This study assumes the sampling interval of vehicle sensors (triaxial accelerom-
eter, speedometer) short enough in comparison with the changing rates of the
vehicle’s moving velocity and acceleration. By utilizing a rotational transformation
between the Cartesian frame and the spherical frame, we can obtain the three axis
velocities of the robot.

vx(k) = v(k) cos ρ(k) cos θ(k),

vy(k) = v(k) cos ρ(k) sin θ(k),

vz(k) = v(k) sin ρ(k).

(4)

Hence, the position in the world frame X–Y–Z is then calculated by

x(k + 1) = x(k) + �t · νx(k),

y(k + 1) = y(k) + �t · νy(k),

z(k + 1) = z(k) + �t · νz(k).

(5)
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3.4. LOCALIZATION ESTIMATION

A fundamental capability of an autonomous mobile robot is its ability to localize
itself with respect to its reference frame. To do so, the inertial navigation system
(INS) of the laboratory-based autonomous mobile robot consists of a sensor mod-
ule, which includes speedometer, triaxial accelerometer and attitude estimation
system. Based on these signal measurements, the three-dimensional velocity and
position vectors are then computed. Since there is no device measuring the absolute
position of the robot, the position can only be estimated through the integration
of the accelerometer signals and speedometer signals. The speedometer is mainly
used for the calculation of the traveled distance and the accelerometer is adopted
to obtain the position estimate.

For this study, the Kalman filter is used as a navigation sensor fusion processor.
This type of sensor fusion provides optimal state estimation that is not directly
measurable. Given the observations, the states to be estimated are the linear accel-
eration, velocity and position of the vehicle. In order to reduce the computational
complexity of the Kalman filter algorithm, the triaxial Kalman filter is decom-
posed into three single-axis Kalman filters, thereby reducing the computation load.
According to (1), (2), (4), and (5), we define two discrete x axis vectors in the
following (Barshan and Durrant-Whyte, 1995):

X(k) = [
x(k) vx(k) ax(k) v(k) axm(k) aym(k) azm(k)

]T
,

Z(k) = [
zv(k) zaxm(k) zaym(k) zazm(k)

]T
.

Thus, a discrete X axis matrix state equation can be of the form

X(k + 1) = Fx · X(k) + Gx · Wx(k), (6)

where

Fx =










1 �t 0 0 0
0 0 �t cos θ(k) cos ρ(k) 0
0 0 0 0 cos θ(k) cos ρ(k)

0 0 0 1 0
0 0 0 0 1
0 0 0 0 0
0 0 0 0 0

0 0
0 0

− sin θ(k) cos ρ(k) − sin θ(k) sin ρ(k)

0 0
0 0
1 0
0 1










,
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Gx =










0 0 0 0
0 0 0 0
0 0 0 0
1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 1










and the measurement noise Wx(k) = [ων(k) ωaxm(k) ωaym(k) ωazm(k)]T is a white
Gaussian distribution noise vector with zero-mean and covariance matrix given by
Qx = diag{qv(k), qaxm(k), qaym(k), qazm(k)}, i.e., W(k) ∼ N(0, Qx(k)).

The discrete x axis matrix measurement equation is then expressed by

Zx(k) = Hx · X(k) + Vx(k), (7)

where

Hx =





0 0 0 1 0 0 0
0 0 0 0 1 0 0
0 0 0 0 0 1 0
0 0 0 0 0 0 1






and the measurement noise Vx = [vν(k) vaxm(k) vaym(k) vazm(k)]T is a zero-mean
white Gaussian vector with the covariance of Rx = diag{δv(k), δaxm(k), δaym(k),

δazm(k)}, i.e., Vx(k) ∼ N(0, Rx(k)).
A standard Kalman filter algorithm is utilized to obtain the optimal state esti-

mates of the x-axis dynamics of the vehicle. Thus, the best x-axis position estimate
of the vehicle can be obtained from X̂(k/k) = X̂x(k/k). Using the same method,
we can obtain the best y-axis position estimate, Ŷ (k/k) = X̂y(k/k), and the best
x-axis position estimate, Ẑ(k/k) = X̂z(k/k), respectively.

4. EKF-Based Sensor Fusion for Integrating INS and Ultrasonic Location
System

The ultrasonic location subsystem will be employed to calibrate the posture in-
formation originally provided by the INS system. When the robot moves into
the effective coverage area of ultrasonic signals, its posture can be updated using
the ultrasonic TOF signals. An EKF-based sensor fusion algorithm for merging
ultrasonic and INS measurements is proposed as follows:

Step 1. Using the previous INS algorithm, the position x, y, z and the orienta-
tion θ of the robot can be determined in the reference coordinate






x(k + 1)

y(k + 1)

z(k + 1)

θ(k + 1)




 =






x(k)

y(k)

z(k)

θ(k)




 +






ωx(k)

ωy(k)

ωz(k)

ωθ(k)




 , (8)
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where ωx(k), ωy(k) and ωz(k) denote the errors of the INS position estimates, and
ωθ(k) represents the orientation variations due to magnetic interference. Moreover,
the process noises are assumed to be discrete-time, zero-mean white Gaussian se-
quences with diagonal covariance matrix Q(k) = diag{qx(k), qy(k), qz(k), qθ (k)}.

Step 2. Assume that the robot moves slowly; his four TOF measurements of the
ultrasonic localization system are expressed using the following matrix equation







t1(k) − td1

t2(k) − td2

t3(k) − td3

t4(k) − td4





 =







D1/c

D2/c

D3/c

D4/c





 +







n1(k)

n2(k)

n3(k)

n4(k)





 , (9)

where

D1 =
√

(x1 − x5)2 + (y1 − y5)2 + (z1 − z5)2,

D2 =
√

(x2 − x5)2 + (y2 − y5)2 + (z2 − z5)2,

D3 =
√

(x3 − x5)2 + (y3 − y5)2 + (z3 − z5)2,

D4 =
√

(x4 − x5)2 + (y4 − y5)2 + (z4 − z5)2.

In (9), ti and tdi denote the TOF and the time delay of the ith receiver, respec-
tively. Measurement noises n1(k), n2(k), n3(k) and n4(k) are regarded as mutu-
ally independent, zero-mean white Gaussian processes with covariance R(k) =
diag{δ1(k), δ2(k), δ3(k), δ4(k)}.

Equations (8) and (9) can be more compactly rewritten in the vector–matrix
form:

X(k + 1) = X(k) + W(k), (10)

Z(k) = h(X(k)) + V (k), (11)

where

X(k) = [
x(k) y(k) z(k) θ(k)

]T
,

Z(k) =[
t1(k) − td1 t2(k) − td2 t3(k) − td3 t4(k) − td4

]T
,

W(k) =[
ωx(k) ωy(k) ωz(k) ωθ(k)

]T
,

V (k) = [
n1(k) n2(k) n3(k) n4(k)

]T
,

h(X(k)) =
[
D1

c

D2

c

D3

c

D4

c

]T

.
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Step 3. Apply the standard EKF algorithm in (Saridis, 1995) to find the best
estimate of X(k). Notice that applying the standard EKF algorithm requires that
the Jacobian matrix H of Z(k) is given by

H











x

y

z

θ









 =











x1 − x5

cD1

y1 − y5

cD1

z1 − z5

cD1

A1

c2

x2 − x5

cD2

y2 − y5

cD2

z2 − z5

cD2

A2

c2

x3 − x5

cD3

y3 − y5

cD3

z3 − z5

cD3

A3

c2

x4 − x5

cD4

y4 − y5

cD4

z4 − z5

cD4
0











,

where

A1 =
[
x − 0.5 · d cos θ −

√
3

2
d sin θ − x5

]
·
[

0.5 · d sin θ −
√

3

2
d cos θ

]

+
[
y +

√
3

2
cos θ − 0.5 · d sin θ − y5

][
−

√
3

2
sin θ − 0.5 · d sin θ

]
,

A2 =
[
x − 0.5 · d cos θ +

√
3

2
d sin θ − x5

]
·
[

0.5 · d sin θ +
√

3

2
d cos θ

]

+
[
y −

√
3

2
cos θ − 0.5 · d sin θ − y5

]
·
[√

3

2
sin θ − 0.5 · d cos θ

]
,

A3 = [x + d cos θ − x5] · [−d sin θ ] + [y + d sin θ − y5] · [d cos θ ].
With a good initialization of X̂(0/0) and P̃ (0/0), the EKF-based sensor fusion
algorithm will yield a good estimate of the vehicle posture.

5. Experimental Results and Discussion

Two experiments were conducted in this section to investigate the feasibility, ac-
curacy and performance of the proposed method: one is for the stand-alone INS
system; the other is for dynamic properties of the integrated INS/Ultrasonic system.

5.1. INS PERFORMANCE EVALUATION

The aim of the experiment of the stand-alone INS system on two different terrains:
an inclined terrain and an irregular terrain, is to study what accuracy and precision
the experimental INS system achieves. Before proceeding with the experiment,
all important components, such as the speedometer and the triaxial accelerometer,
were correctly calibrated, hereby allowing us to compute the statistical parameters
of their noise model: qv = δv = 0.21 cm/sec2, qaxm = δaxm = 22.57 cm/sec2,
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(a)

(b)

Figure 6. (a) x–y trajectories of the robot over inclined terrain; (b) y–z trajectories of the
robot over inclined terrain.
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Figure 7. Schematics of the irregular terrain.

qaym = δaym = 22.84 cm/sec2 and qazm = δazm = 22.18 cm/sec2. In the experi-
ments, the robot was assumed to move in a line with fixed heading angle of 45◦.

To accomplish the inclined terrain experiment, a path profile with the dimension
366 (D) · 90 (W) · 77.3 (H) cm and the pitch angle of 12◦ and with a paral-
lel plane (180 cm in length) at the top of the ramp is made in (Lai, 2000). The
robot was controlled to move straight up to the inclined terrain with the fixed
heading angle of 45◦. Figure 6 shows the experimental data. The result in Fig-
ure 6 indicates that the proposed INS system performs as well as 3D DR method.
To compare the INS system with the DR system in detail, a complicated terrain
environment is constructed to examine the feasibility, and accuracy of the INS
system. Figure 7 depicts the experimental terrain with a steep gradient and un-
dulating profile. Similarly, to make the experiment simple and easy, let the robot
move up the inclined terrain with the fixed heading angle of 45◦. Figure 8 displays
the results of this experiment where the true final position was at the localization
(577.85 cm, 577.85 cm, 77.38 cm). The final position estimated by the INS system
was (592.23 cm, 592.06 cm, 75.90 cm) and the DR system gives it at (641.81 cm,
641.70 cm, 83.71 cm). The experimental results reveal that for the uneven terrain,
the INS system outperforms the 3D DR system even over such a short distance;
moreover, the INS system circumvents the unsolved problem of wheel slippage.

5.2. INS/ULTRASONIC EXPERIMENTAL RESULTS AND DISCUSSION

The experiment of the INS/Ultrasonic system focuses on exploring how the system
overcomes the accumulation error problem caused by the proposed INS system
while the robot travels over uneven terrain. As in the previous experiment, the sta-
tistical parameters of the proposed INS system output must be correctly computed,
thus obtaining qx = 0.74 cm, qy = 0.76 cm, qz = 0.77 cm and qθ = 2◦.

The ultrasonic transmitter was located at the perspecified position (167.6 cm,
237.0 cm, 252.0 cm) with respect to the world frame. While the experiment was
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(a)

(b)

Figure 8. (a) x–y trajectories of the robot over the irregular terrain; (b) y–z trajectories of the
robot over the irregular terrain.
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(a)

(b)

Figure 9. (a) 3D trajectory of the robot over the irregular terrain (move up cases); (b) time
history of the robot heading estimate.

being performed, the mean ambient temperature was fixed to be almost constant
(T = 22.3◦C) with small temperature fluctuations allowed (�T = ±0.3◦C).
Therefore the correct speed of the ultrasonic sound was 34456.88 cm/sec. Thus,
the standard deviations of the TOF measurements were computed as σ1 = 4.2 µs,
σ2 = 4.5 µs, σ3 = 4.4 µs and σ4 = 4.3 µs. The time delays of the ultrasonic
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transmitter/receiver modules were measured as td1 = 0.452 ms, td2 = 0.455 ms,
td3 = 0.454 ms and td4 = 0.432 ms. In addition, other parameters were measured
and given by spaced distance d = 15 cm and the sampling period Ts = 0.05 sec.

To make the experiment successful, the vehicle was steered to move up along
a straight line with an errorous heading angle of 150◦ over the previous inclined
terrain. Figure 9 shows the resultant outcomes. When mobile vehicle reached the
area which was covered by the ultrasonic wave, we used the ultrasonic localization
system together with the proposed EKF algorithm to correct the posture estimate.
The actual final posture was located at (126.0 cm, 252.0 cm, 164.3 cm, 160◦),
while the final position and orientation estimated by the integrated INS/Ultrasonic
system were (125.0 cm, 251.82 cm, 164.87 cm, 159.847◦). One more experiment
was conducted to provide sufficient information to verity the efficacy of the pro-
posed method. The vehicle was steered to move down along a straight line with an
errorous heading angle of 180◦ over the previous inclined terrain. Figure 10 shows
the results; the results are very similar to the previous ones, and these results pro-
vide additional evidences to justify the effectiveness of the proposed method. The
experimental results in Figures 9 and 10 indicate that the INS/Ultrasonic system
gives a better estimate of the vehicle posture.

6. Conclusions

This paper has incorporated the INS and ultrasonic sensor integration system for
finding a better current posture of a mobile robot traveling over uneven terrain.
The integrated system combines the strong points of the two subsystems for yield-
ing better position accuracy but less computation requirement. The proposed INS
system has been shown capable of providing low-cost, high-precision posture in-
formation for the vehicle traveling over short distances. The initial covariance of
the Kalman filter has a tremendous effect on the performance of the navigation
system and can be adjusted based on the system process noise and limitations of
the sensors. By choosing process covariance matrix Q(k) and noise covariance
matrix R(k) appropriately, the effects of process uncertainties and sensor inaccura-
cies can be minimized by the Kalman filtering process. Through the experimental
results over the uneven terrain, the INS/Ultrasonic system has been proven capable
of having position accuracy of less than 1 cm and orientation accuracy of less
than 1◦. An important topic for future research might be to address the initialization
problem of the robot using ultrasonics.
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Figure 10. (a) 3D trajectory of the robot over the irregular terrain (move down cases); (b) time
history of the robot heading estimate.
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