421 research outputs found

    Diurnal variation of midlatitudinal NO3 column abundance over table mountain facility, California

    Get PDF
    The column abundance of NO3 was measured over Table Mountain Facility, CA (34.4° 117.7° W) from May 2003 through September 2004, using lunar occultation near full moon with a grating spectrometer. The NO 3 column retrieval was performed with the differential optical absorption spectroscopy (DOAS) technique using both the 623 and 662 nm NO 3 absorption bands. Other spectral features such as Fraunhofer lines and absorption from water vapor and oxygen were removed using solar spectra obtained at different airmass factors. We observed a seasonal variation, with nocturnally averaged NO3 columns between 5-7 × 1013 molec cm-2 during October through March, and 5-22 × 10 13 molec cm-2 during April through September. A subset of the data, with diurnal variability vastly different from the temporal profile obtained from one-dimensional stratospheric model calculations, clearly has boundary layer contributions; this was confirmed by simultaneous long-path DOAS measurements. However, even the NO3 columns that did follow the modeled time evolution were often much larger than modeled stratospheric partial columns constrained by realistic temperatures and ozone concentrations. This discrepancy is attributed to substantial tropospheric NO3 in the free troposphere, which may have the same time dependence as stratospheric NO 3

    D-branes in T-fold conformal field theory

    Full text link
    We investigate boundary dynamics of orbifold conformal field theory involving T-duality twists. Such models typically appear in contexts of non-geometric string compactifications that are called monodrofolds or T-folds in recent literature. We use the framework of boundary conformal field theory to analyse the models from a microscopic world-sheet perspective. In these backgrounds there are two kinds of D-branes that are analogous to bulk and fractional branes in standard orbifold models. The bulk D-branes in T-folds allow intuitive geometrical interpretations and are consistent with the classical analysis based on the doubled torus formalism. The fractional branes, on the other hand, are `non-geometric' at any point in the moduli space and their geometric counterparts seem to be missing in the doubled torus analysis. We compute cylinder amplitudes between the bulk and fractional branes, and find that the lightest modes of the open string spectra show intriguing non-linear dependence on the moduli (location of the brane or value of the Wilson line), suggesting that the physics of T-folds, when D-branes are involved, could deviate from geometric backgrounds even at low energies. We also extend our analysis to the models with SU(2) WZW fibre at arbitrary levels.Comment: 38 pages, no figure, ams packages. Essentially the published versio

    Leading Order Textures for Lepton Mass Matrices

    Get PDF
    In theories with three light neutrinos, certain simplicity assumptions allow the construction of a complete list of leading order lepton mass matrices. These matrices are consistent with m_{tau} \neq 0, Delta m^2_{12} \ll Delta m^2_{23}, theta_{23} approx 1, and theta_{13} = 0, as suggested by measurements of atmospheric and solar neutrino fluxes. The list contains twelve generic cases: two have three degenerate neutrinos, eight have two neutrinos forming a Dirac state, and in only two cases is one neutrino much heavier than the other two. For each of these twelve generic cases the possible forms for the perturbations which yield m_{mu} are given. Ten special textures are also found.Comment: 17 pages, added reference

    Larkin-Ovchinnikov-Fulde-Ferrell state in quasi-one-dimensional superconductors

    Full text link
    The properties of a quasi-one-dimensional (quasi-1D) superconductor with {\it an open Fermi surface} are expected to be unusual in a magnetic field. On the one hand, the quasi-1D structure of the Fermi surface strongly favors the formation of a non-uniform state (Larkin-Ovchinnikov-Fulde-Ferrell (LOFF) state) in the presence of a magnetic field acting on the electron spins. On the other hand, a magnetic field acting on an open Fermi surface induces a dimensional crossover by confining the electronic wave-functions wave-functions along the chains of highest conductivity, which results in a divergence of the orbital critical field and in a stabilization at low temperature of a cascade of superconducting phases separated by first order transistions. In this paper, we study the phase diagram as a function of the anisotropy. We discuss in details the experimental situation in the quasi-1D organic conductors of the Bechgaard salts family and argue that they appear as good candidates for the observation of the LOFF state, provided that their anisotropy is large enough. Recent experiments on the organic quasi-1D superconductor (TMTSF)2_2ClO4_4 are in agreement with the results obtained in this paper and could be interpreted as a signature of a high-field superconducting phase. We also point out the possibility to observe a LOFF state in some quasi-2D organic superconductors.Comment: 24 pages+17 figures (upon request), RevTex, ORSAY-LPS-24109

    N=8 SCFT and M Theory on AdS_4 x RP^7

    Get PDF
    We study M theory on AdS_4 \times \RP^7 corresponding to 3 dimensional N=8{\cal N}=8 superconformal field theory which is the strong coupling limit of 3 dimensional super Yang-Mills theory. For SU(N) theory, a wrapped M5 brane on \RP^5 can be interpreted as baryon vertex. For SO(N)/Sp(2N)SO(N)/Sp(2N) theory, by using the property of (co-)homology of \RP^7, we classify various wrapping branes and consider domain walls and the baryon vertex.Comment: 17 pages, Changed baryon like operator as M5 branes in M theory rather than D6 brane in IIA theory. To appear in Phys.Rev.

    Mirrorfolds with K3 Fibrations

    Full text link
    We study a class of non-geometric string vacua realized as completely soluble superconformal field theory (SCFT). These models are defined as `interpolating orbifolds' of K3×S1K3 \times S^1 by the mirror transformation acting on the K3K3 fiber combined with the half-shift on the S1S^1-base. They are variants of the T-folds, the interpolating orbifolds by T-duality transformations, and thus may be called `mirrorfolds'. Starting with arbitrary (compact or non-compact) Gepner models for the K3K3 fiber, we construct modular invariant partition functions of general mirrorfold models. In the case of compact K3K3 fiber the mirrorfolds only yield non-supersymmetric string vacua. They exhibit IR instability due to winding tachyon condensation which is similar to the Scherk-Schwarz type circle compactification. When the fiber SCFT is non-compact (say, the ALE space in the simplest case), on the other hand, both supersymmetric and non-supersymmetric vacua can be constructed. The non-compact non-supersymmetric mirrorfolds can get stabilised at the level of string perturbation theory. We also find that in the non-compact supersymmeric mirrorfolds D-branes are {\em always} non-BPS. These D-branes can get stabilized against both open- and closed-string marginal deformations.Comment: Eqns (2.61) and (3.17) correcte

    The SAMI Galaxy Survey: Spatially resolving the environmental quenching of star formation in GAMA galaxies

    Get PDF
    We use data from the Sydney-AAO Multi-Object Integral Field Spectrograph (SAMI) Galaxy Survey and the Galaxy And Mass Assembly (GAMA) survey to investigate the spatially-resolved signatures of the environmental quenching of star formation in galaxies. Using dust-corrected measurements of the distribution of Hα emission we measure the radial profiles of star formation in a sample of 201 star-forming galaxies covering three orders of magnitude in stellar mass (M∗M∗; 108.1-1010.95 M⊙) and in 5th nearest neighbour local environment density (Σ5; 10−1.3- 102.1 Mpc−2). We show that star formation rate gradients in galaxies are steeper in dense (log10(Σ5/Mpc2) > 0.5) environments by 0.58 ± 0.29 dex re−1 in galaxies with stellar masses in the range 1010 1.0). These lines of evidence strongly suggest that with increasing local environment density the star formation in galaxies is suppressed, and that this starts in their outskirts such that quenching occurs in an outside-in fashion in dense environments and is not instantaneous

    Detector Description and Performance for the First Coincidence Observations between LIGO and GEO

    Get PDF
    For 17 days in August and September 2002, the LIGO and GEO interferometer gravitational wave detectors were operated in coincidence to produce their first data for scientific analysis. Although the detectors were still far from their design sensitivity levels, the data can be used to place better upper limits on the flux of gravitational waves incident on the earth than previous direct measurements. This paper describes the instruments and the data in some detail, as a companion to analysis papers based on the first data.Comment: 41 pages, 9 figures 17 Sept 03: author list amended, minor editorial change
    corecore