2,841 research outputs found

    A new 2-D model of a thin annular disk using a modified assumption

    No full text
    The work describes an improved 2-D model for a thin annulus by using a modified assumption with regard to coupled vibration. With this approach, the impedance spectrum and displacements due to radial modes, both in radial and thickness direction of a thin ring, are obtained. Bending displacement is investigated by finite element analysis (FEA) and matches our model. The bending in the thickness direction is coupled to radial modes and shows several node circles in the high radial overtone frequency range. The model is validated by FEA with excellent agreement between the new theory and FEA result

    Letter seeking more information from John S.P. Jones, Jr., July 12, 1940.

    Get PDF
    https://digitalmaine.com/alien_corresp/1013/thumbnail.jp

    A Natural History of Repetition

    Get PDF
    The purpose of this study was to understand typically developing children’s repetitive behavior in a free-play, daycare setting. By studying repetition in a non-Montessori setting, we tested the assumption that repetition is a characteristic behavior of all young children and not limited to the Montessori environment. Although Maria Montessori identified repetition during her observations, there is little empirical evidence to support her claim: most research has considered repetition in terms of psychopathology. We collected naturalistic observational data on 31 3- to 6-year-old children for a total of 101 hours to investigate the frequency, contexts, and structure of repetitive bouts. Multilevel model results suggest the ubiquity of repetition, as all children in the study engaged in motor repetition. Furthermore, repetition occurred throughout all free-play activities (construction, animation, fantasy play, rough-and-tumble play, and undirected activity), although repetition was not equally distributed across activities. Motor repetition was not equal across ages either; younger children engaged in more motor repetition than did older children. To understand the structure of repetition, our study also looked at the length of repetition bouts, which ranged from 2 to 19 repetitions and averaged 2.86 repetitions per bout. This natural history of repetition is an influential starting point for understanding the role of repetition in development and is informative to both Montessori and non-Montessori early childhood educators

    RAFT Dispersion Alternating Copolymerization of Styrene with N-Phenylmaleimide: Morphology Control and Application as an Aqueous Foam Stabilizer

    Get PDF
    We report a new nonaqueous polymerization-induced self-assembly (PISA) formulation based on the reversible addition−fragmentation chain transfer (RAFT) dispersion alternating copolymerization of styrene with N-phenylmaleimide using a nonionic poly(N,N-dimethylacrylamide) stabilizer in a 50/50 w/w ethanol/methyl ethyl ketone (MEK) mixture. The MEK cosolvent is significantly less toxic than the 1,4-dioxane cosolvent reported previously [Yang, P.; et al. Macromolecules 2013, 46, 8545−8556]. The core-forming alternating copolymer block has a relatively high glass transition temperature (Tg), which leads to vesicular morphologies being observed during PISA, as well as the more typical sphere and worm phases. Each of these copolymer morphologies has been characterized by transmission electron microscopy (TEM) and small-angle X-ray scattering (SAXS) studies. TEM studies reveal micrometer-sized elliptical particles with internal structure, with SAXS analysis suggesting an oligolamellar vesicle morphology. This structure differs from that previously reported for a closely related PISA formulation utilizing a poly(methacrylic acid) stabilizer block for which unilamellar platelet-like particles are observed by TEM and SAXS. This suggests that interlamellar interactions are governed by the nature of the steric stabilizer layer. Moreover, using the MEK cosolvent also enables access to a unilamellar vesicular morphology, despite the high Tg of the alternating copolymer coreforming block. This was achieved by simply conducting the PISA synthesis at a higher temperature for a longer reaction time (80 °C for 24 h). Presumably, MEK solvates the core-forming block more than the previously utilized 1,4-dioxane cosolvent, which leads to greater chain mobility. Finally, preliminary experiments indicate that the worms are much more efficient stabilizers for aqueous foams than either the spheres or the oligolamellar elliptical vesicles

    The exclusive J/ψ process at the LHC tamed to probe the low x gluon

    Get PDF
    The perturbative QCD expansion for J/ψ photoproduction appears to be unstable: the NLO correction is large (and of opposite sign) to the LO contribution. Moreover, the predictions are very sensitive to the choice of factorisation and renormalisation scales. Here we show that perturbative stability is greatly improved by imposing a ‘Q0 cut’ on the NLO coefficient functions; a cut which is required to avoid double counting. Q0 is the input scale used in the parton DGLAP evolution. This result opens the possibility of high precision exclusive J/ψ data in the forward direction at the LHC being able to determine the low x gluon distribution at low scales

    Addition of water to an alcoholic RAFT PISA formulation leads to faster kinetics but limits the evolution of copolymer morphology

    Get PDF
    RAFT dispersion polymerization of benzyl methacrylate (BzMA) has been used previously (E. R. Jones, et al., Macromolecules, 2012, 45, 5091) to prepare poly(2-(dimethylamino)ethyl methacrylate)-poly- (benzyl methacrylate) (PDMA–PBzMA) diblock copolymer nanoparticles in ethanol via polymerizationinduced self-assembly (PISA). However, the rate of polymerization was relatively slow, with incomplete monomer conversions being obtained when targeting higher mean degrees of polymerization (DP) even after 24 h at 70 °C. Herein we examine the effect of the addition of up to 20% w/w water co-solvent on the kinetics of BzMA polymerization for this PISA formulation. Significantly faster polymerizations were observed: for a target DP of 200, 90% BzMA conversion was achieved within just 6 h in the presence of 20% w/w water, compared to only 35% conversion in anhydrous ethanol under the same conditions. This rate enhancement enables much higher mean DPs to be obtained for the core-forming PBzMA and is attributed to greater partitioning of the BzMA monomer within the particles, which increases the local monomer concentration. However, the presence of water adversely affected the evolution of copolymer morphology from spheres to worms to vesicles when employing a relatively short PDMA chain transfer agent, with only kinetically-trapped spheres being obtained at higher levels of added water. Aqueous electrophoresis studies indicate that the PDMA stabilizer chains acquired partial cationic charge in the presence of water. This leads to more efficient inter-particle repulsion, thus preventing the sphere-sphere fusion events required for an evolution in morphology. In summary, the addition of water to such PISA formulations allows the more efficient synthesis of spherical nanoparticles, but should be used with caution if either diblock copolymer worms or vesicles are desired

    Strategic eye movements are used to support object authentication

    Get PDF
    Authentication is an important cognitive process used to determine whether one’s initial identification of an object is corroborated by additional sensory information. Although authentication is critical for safe interaction with many objects, including food, websites, and valuable documents, the visual orienting strategies used to garner additional sensory data to support authentication remain poorly understood. When reliable visual cues to counterfeit cannot be anticipated, distributing fixations widely across an object’s surface might be useful. However, strategic fixation of specific object-defining attributes would be more efficient and should lead to better authentication performance. To investigate, we monitored eye movements during a repetitive banknote authentication task involving genuine and counterfeit banknotes. Although fixations were distributed widely across the note prior to authentication decisions, preference for hard-to mimic areas and avoidance of easily mimicked areas was evident. However, there was a strong tendency to initially fixate the banknote’s portrait, and only thereafter did eye movement control appear to be more strategic. Those who directed a greater proportion of fixations at hard-to-mimic areas and resisted more easily mimicked areas performed better on the authenticity task. The tendency to deploy strategic fixation improved with experience, suggesting that authentication benefits from precise visual orienting and refined categorisation criteria
    • …
    corecore