97 research outputs found

    Bumpy black holes from spontaneous Lorentz violation

    Full text link
    We consider black holes in Lorentz violating theories of massive gravity. We argue that in these theories black hole solutions are no longer universal and exhibit a large number of hairs. If they exist, these hairs probe the singularity inside the black hole providing a window into quantum gravity. The existence of these hairs can be tested by future gravitational wave observatories. We generically expect that the effects we discuss will be larger for the more massive black holes. In the simplest models the strength of the hairs is controlled by the same parameter that sets the mass of the graviton (tensor modes). Then the upper limit on this mass coming from the inferred gravitational radiation emitted by binary pulsars implies that hairs are likely to be suppressed for almost the entire mass range of the super-massive black holes in the centers of galaxies.Comment: 40 pages, 4 figure

    The Effect of Hot Deformation Parameters on Microstructure Evolution of the α-Phase in Ti-6Al-4V

    Get PDF
    The effect of high-temperature deformation and the influence of hot working parameters on microstructure evolution during isothermal hot forging of Ti-6Al-4V in the alpha phase field were investigated. A series of hot isothermal axis-symmetric compression tests were carried out at temperatures both low and high in the alpha stability field [(1153 K and 1223 K (880 °C and 950 °C), respectively], using three strain rates (0.01, 0.1 and 1.0/s) relevant to industrial press forging. The microstructures and orientation of the alpha laths were determined using optical microscopy and electron backscatter diffraction techniques. The experimental results show that there is a change in lath morphology of the secondary α phase under the influence of the deformation parameters, and that α lath thickness appears to have little influence on flow behavior

    Modelling spectral and timing properties of accreting black holes: the hybrid hot flow paradigm

    Full text link
    The general picture that emerged by the end of 1990s from a large set of optical and X-ray, spectral and timing data was that the X-rays are produced in the innermost hot part of the accretion flow, while the optical/infrared (OIR) emission is mainly produced by the irradiated outer thin accretion disc. Recent multiwavelength observations of Galactic black hole transients show that the situation is not so simple. Fast variability in the OIR band, OIR excesses above the thermal emission and a complicated interplay between the X-ray and the OIR light curves imply that the OIR emitting region is much more compact. One of the popular hypotheses is that the jet contributes to the OIR emission and even is responsible for the bulk of the X-rays. However, this scenario is largely ad hoc and is in contradiction with many previously established facts. Alternatively, the hot accretion flow, known to be consistent with the X-ray spectral and timing data, is also a viable candidate to produce the OIR radiation. The hot-flow scenario naturally explains the power-law like OIR spectra, fast OIR variability and its complex relation to the X-rays if the hot flow contains non-thermal electrons (even in energetically negligible quantities), which are required by the presence of the MeV tail in Cyg X-1. The presence of non-thermal electrons also lowers the equilibrium electron temperature in the hot flow model to <100 keV, making it more consistent with observations. Here we argue that any viable model should simultaneously explain a large set of spectral and timing data and show that the hybrid (thermal/non-thermal) hot flow model satisfies most of the constraints.Comment: 26 pages, 13 figures. To be published in the Space Science Reviews and as hard cover in the Space Sciences Series of ISSI - The Physics of Accretion on to Black Holes (Springer Publisher

    Heavy quarkonium: progress, puzzles, and opportunities

    Get PDF
    A golden age for heavy quarkonium physics dawned a decade ago, initiated by the confluence of exciting advances in quantum chromodynamics (QCD) and an explosion of related experimental activity. The early years of this period were chronicled in the Quarkonium Working Group (QWG) CERN Yellow Report (YR) in 2004, which presented a comprehensive review of the status of the field at that time and provided specific recommendations for further progress. However, the broad spectrum of subsequent breakthroughs, surprises, and continuing puzzles could only be partially anticipated. Since the release of the YR, the BESII program concluded only to give birth to BESIII; the BB-factories and CLEO-c flourished; quarkonium production and polarization measurements at HERA and the Tevatron matured; and heavy-ion collisions at RHIC have opened a window on the deconfinement regime. All these experiments leave legacies of quality, precision, and unsolved mysteries for quarkonium physics, and therefore beg for continuing investigations. The plethora of newly-found quarkonium-like states unleashed a flood of theoretical investigations into new forms of matter such as quark-gluon hybrids, mesonic molecules, and tetraquarks. Measurements of the spectroscopy, decays, production, and in-medium behavior of c\bar{c}, b\bar{b}, and b\bar{c} bound states have been shown to validate some theoretical approaches to QCD and highlight lack of quantitative success for others. The intriguing details of quarkonium suppression in heavy-ion collisions that have emerged from RHIC have elevated the importance of separating hot- and cold-nuclear-matter effects in quark-gluon plasma studies. This review systematically addresses all these matters and concludes by prioritizing directions for ongoing and future efforts.Comment: 182 pages, 112 figures. Editors: N. Brambilla, S. Eidelman, B. K. Heltsley, R. Vogt. Section Coordinators: G. T. Bodwin, E. Eichten, A. D. Frawley, A. B. Meyer, R. E. Mitchell, V. Papadimitriou, P. Petreczky, A. A. Petrov, P. Robbe, A. Vair

    Which clinical research questions are the most important? Development and preliminary validation of the Australia & New Zealand Musculoskeletal (ANZMUSC) Clinical Trials Network Research Question Importance Tool (ANZMUSC-RQIT).

    Get PDF
    Background and aims High quality clinical research that addresses important questions requires significant resources. In resource-constrained environments, projects will therefore need to be prioritized. The Australia and New Zealand Musculoskeletal (ANZMUSC) Clinical Trials Network aimed to develop a stakeholder-based, transparent, easily implementable tool that provides a score for the 'importance' of a research question which could be used to rank research projects in order of importance. Methods Using a mixed-methods, multi-stage approach that included a Delphi survey, consensus workshop, inter-rater reliability testing, validity testing and calibration using a discrete-choice methodology, the Research Question Importance Tool (ANZMUSC-RQIT) was developed. The tool incorporated broad stakeholder opinion, including consumers, at each stage and is designed for scoring by committee consensus. Results The ANZMUSC-RQIT tool consists of 5 dimensions (compared to 6 dimensions for an earlier version of RQIT): (1) extent of stakeholder consensus, (2) social burden of health condition, (3) patient burden of health condition, (4) anticipated effectiveness of proposed intervention, and (5) extent to which health equity is addressed by the research. Each dimension is assessed by defining ordered levels of a relevant attribute and by assigning a score to each level. The scores for the dimensions are then summed to obtain an overall ANZMUSC-RQIT score, which represents the importance of the research question. The result is a score on an interval scale with an arbitrary unit, ranging from 0 (minimal importance) to 1000. The ANZMUSC-RQIT dimensions can be reliably ordered by committee consensus (ICC 0.73-0.93) and the overall score is positively associated with citation count (standardised regression coefficient 0.33, p<0.001) and journal impact factor group (OR 6.78, 95% CI 3.17 to 14.50 for 3rd tertile compared to 1st tertile of ANZMUSC-RQIT scores) for 200 published musculoskeletal clinical trials. Conclusion We propose that the ANZMUSC-RQIT is a useful tool for prioritising the importance of a research question.William J. Taylor, Robin Willink, Denise A. O, Connor, Vinay Patel, Allison Bourne, Ian A. Harris, Samuel L. Whittle, Bethan Richards, Ornella Clavisi, Sally Green, Rana S. Hinman, Chris G. Maher, Ainslie Cahill, Annie McPherson, Charlotte Hewson, Suzie E. May, Bruce Walker, Philip C. Robinson, Davina Ghersi, Jane Fitzpatrick, Tania Winzenberg, Kieran Fallon, Paul Glasziou, Laurent Billot, Rachelle Buchbinde

    Genome-wide meta-analyses reveal novel loci for verbal short-term memory and learning

    Get PDF
    Understanding the genomic basis of memory processes may help in combating neurodegenerative disorders. Hence, we examined the associations of common genetic variants with verbal short-term memory and verbal learning in adults without dementia or stroke (N = 53,637). We identified novel loci in the intronic region of CDH18, and at 13q21 and 3p21.1, as well as an expected signal in the APOE/APOC1/TOMM40 region. These results replicated in an independent sample. Functional and bioinformatic analyses supported many of these loci and further implicated POC1. We showed that polygenic score for verbal learning associated with brain activation in right parieto-occipital region during working memory task. Finally, we showed genetic correlations of these memory traits with several neurocognitive and health outcomes. Our findings suggest a role of several genomic loci in verbal memory processes

    Towards Jetography

    Full text link
    As the LHC prepares to start taking data, this review is intended to provide a QCD theorist's understanding and views on jet finding at hadron colliders, including recent developments. My hope is that it will serve both as a primer for the newcomer to jets and as a quick reference for those with some experience of the subject. It is devoted to the questions of how one defines jets, how jets relate to partons, and to the emerging subject of how best to use jets at the LHC.Comment: 95 pages, 28 figures, an extended version of lectures given at the CTEQ/MCNET school, Debrecen, Hungary, August 2008; v2 includes additional discussion in several places, as well as other clarifications and additional references
    corecore