864 research outputs found

    Erythrocyte membrane studies in human muscular dystrophy

    Get PDF

    Modulation of DNA damage tolerance in Escherichia coli recG and ruv strains by mutations affecting PriB, the ribosome and RNA polymerase

    Get PDF
    RecG is a DNA translocase that helps to maintain genomic integrity. Initial studies suggested a role in promoting recombination, a possibility consistent with synergism between recG and ruv null alleles and reinforced when the protein was shown to unwind Holliday junctions. In this article we describe novel suppressors of recG and show that the pathology seen without RecG is suppressed on reducing or eliminating PriB, a component of the PriA system for replisome assembly and replication restart. Suppression is conditional, depending on additional mutations that modify ribosomal subunit S6 or one of three subunits of RNA polymerase. The latter suppress phenotypes associated with deletion of priB, enabling the deletion to suppress recG. They include alleles likely to disrupt interactions with transcription anti-terminator, NusA. Deleting priB has a different effect in ruv strains. It provokes abortive recombination and compromises DNA repair in a manner consistent with PriB being required to limit exposure of recombinogenic ssDNA. This synergism is reduced by the RNA polymerase mutations identified. Taken together, the results reveal that RecG curbs a potentially negative effect of proteins that direct replication fork assembly at sites removed from the normal origin, a facility needed to resolve conflicts between replication and transcription

    Contact-induced spin polarization in carbon nanotubes

    Full text link
    Motivated by the possibility of combining spintronics with molecular structures, we investigate the conditions for the appearance of spin-polarization in low-dimensional tubular systems by contacting them to a magnetic substrate. We derive a set of general expressions describing the charge transfer between the tube and the substrate and the relative energy costs. The mean-field solution of the general expressions provides an insightful formula for the induced spin-polarization. Using a tight-binding model for the electronic structure we are able to estimate the magnitude and the stability of the induced moment. This indicates that a significant magnetic moment in carbon nanotubes can be observed.Comment: To appear in Phys. Rev. B (2003

    Hamiltonian light-front field theory within an AdS/QCD basis

    Full text link
    Non-perturbative Hamiltonian light-front quantum field theory presents opportunities and challenges that bridge particle physics and nuclear physics. Fundamental theories, such as Quantum Chromodynmamics (QCD) and Quantum Electrodynamics (QED) offer the promise of great predictive power spanning phenomena on all scales from the microscopic to cosmic scales, but new tools that do not rely exclusively on perturbation theory are required to make connection from one scale to the next. We outline recent theoretical and computational progress to build these bridges and provide illustrative results for nuclear structure and quantum field theory. As our framework we choose light-front gauge and a basis function representation with two-dimensional harmonic oscillator basis for transverse modes that corresponds with eigensolutions of the soft-wall AdS/QCD model obtained from light-front holography.Comment: To appear in the proceedings of Light-Cone 2009: Relativistic Hadronic and Particle Physics, July 8-13, 2009, Sao Jose dos Campos, Brazi

    Secure quantum key distribution using squeezed states

    Get PDF
    We prove the security of a quantum key distribution scheme based on transmission of squeezed quantum states of a harmonic oscillator. Our proof employs quantum error-correcting codes that encode a finite-dimensional quantum system in the infinite-dimensional Hilbert space of an oscillator, and protect against errors that shift the canonical variables p and q. If the noise in the quantum channel is weak, squeezing signal states by 2.51 dB (a squeeze factor e^r=1.34) is sufficient in principle to ensure the security of a protocol that is suitably enhanced by classical error correction and privacy amplification. Secure key distribution can be achieved over distances comparable to the attenuation length of the quantum channel.Comment: 19 pages, 3 figures, RevTeX and epsf, new section on channel losse

    Slater-Pauling Behavior of the Half-Ferromagnetic Full-Heusler Alloys

    Full text link
    Using the full-potential screened Korringa-Kohn-Rostoker method we study the full-Heusler alloys based on Co, Fe, Rh and Ru. We show that many of these compounds show a half-metallic behavior, however in contrast to the half-Heusler alloys the energy gap in the minority band is extremely small. These full-Heusler compounds show a Slater-Pauling behavior and the total spin-magnetic moment per unit cell (M_t) scales with the total number of valence electrons (Z_t) following the rule: M_t=Z_t-24. We explain why the spin-down band contains exactly 12 electrons using arguments based on the group theory and show that this rule holds also for compounds with less than 24 valence electrons. Finally we discuss the deviations from this rule and the differences compared to the half-Heusler alloys.Comment: 10 pages, 8 figures, revised figure 3, new text adde

    Quantum logic between atoms inside a high Q optical cavity

    Get PDF
    We propose a protocol for conditional quantum logic between two 4-state atoms inside a high Q optical cavity. The process detailed in this paper utilizes a direct 4-photon 2-atom resonant process and has the added advantage of commonly addressing the two atoms when they are inside the high Q optical cavity.Comment: 8 pages, 3 figs. submitte

    Decoherence control in microwave cavities

    Full text link
    We present a scheme able to protect the quantum states of a cavity mode against the decohering effects of photon loss. The scheme preserves quantum states with a definite parity, and improves previous proposals for decoherence control in cavities. It is implemented by sending single atoms, one by one, through the cavity. The atomic state gets first correlated to the photon number parity. The wrong parity results in an atom in the upper state. The atom in this state is then used to inject a photon in the mode via adiabatic transfer, correcting the field parity. By solving numerically the exact master equation of the system, we show that the protection of simple quantum states could be experimentally demonstrated using presently available experimental apparatus.Comment: 13 pages, RevTeX, 8 figure

    Young people's uses of celebrity: Class, gender and 'improper' celebrity

    Get PDF
    This is an Author's Accepted Manuscript of an article published in Discourse: Studies in the Cultural Politics of Education, 34(1), 2013, copyright Taylor & Francis, available online at: http://www.tandfonline.com/10.1080/01596306.2012.698865.In this article, we explore the question of how celebrity operates in young people's everyday lives, thus contributing to the urgent need to address celebrity's social function. Drawing on data from three studies in England on young people's perspectives on their educational and work futures, we show how celebrity operates as a classed and gendered discursive device within young people's identity work. We illustrate how young people draw upon class and gender distinctions that circulate within celebrity discourses (proper/improper, deserving/undeserving, talented/talentless and respectable/tacky) as they construct their own identities in relation to notions of work, aspiration and achievement. We argue that these distinctions operate as part of neoliberal demands to produce oneself as a ‘subject of value’. However, some participants produced readings that show ambivalence and even resistance to these dominant discourses. Young people's responses to celebrity are shown to relate to their own class and gender position.The Arts and Humanities Research Council, the British Academy, the Economic and Social Research Council, and the UK Resource Centre for Women in Science Engineering and Technology

    Distribution and characteristics of overdeepenings beneath the Greenland and Antarctic ice sheets: Implications for overdeepening origin and evolution

    Get PDF
    Glacier bed overdeepenings are ubiquitous in glacier systems and likely exert significant influence on ice dynamics, subglacial hydrology, and ice stability. Understanding of overdeepening formation and evolution has been hampered by an absence of quantitative empirical studies of their location and morphology, with process insights having been drawn largely from theoretical or numerical studies. To address this shortcoming, we first map the distribution of potential overdeepenings beneath the Antarctic and Greenland ice sheets using a GIS-based algorithm that identifies closed-contours in the bed topography and then describe and analyse the characteristics and metrics of a subset of overdeepenings that pass further quality control criteria. Overdeepenings are found to be widespread, but are particularly associated with areas of topographically laterally constrained ice flow, notably near the ice sheet margins where outlet systems follow deeply incised troughs. Overdeepenings also occur in regions of topographically unconstrained ice flow (for example, beneath the Siple Coast ice streams and on the Greenland continental shelf). Metrics indicate that overdeepening growth is generally allometric and that topographic confinement of ice flow in general enhances overdeepening depth. However, overdeepening depth is skewed towards shallow values – typically 200 to 300 m – indicating that the rate of deepening slows with overdeepening age. This is reflected in a decline in adverse slope steepness with increasing overdeepening planform size. Finally, overdeepening long-profiles are found to support headward quarrying as the primary factor in overdeepening development. These observations support proposed negative feedbacks related to hydrology and sediment transport that stabilise overdeepening growth through sedimentation on the adverse slope but permit continued overdeepening planform enlargement by processes of headward erosion
    • 

    corecore