459 research outputs found

    Inelastic Channels in the Electroweak Symmetry-Breaking Sector

    Full text link
    It has been argued that if light Higgs bosons do not exist then the self--interactions of WW's become strong in the TeV region and can be observed in longitudinal WWWW scattering. We present a model with many inelastic channels in the WWWW scattering process, corresponding to the creation of heavy fermion pairs. The presence of these heavy fermions affects the elastic scattering of WW's by propagating in loops, greatly reducing the amplitudes in some charge channels. Consequently, the symmetry--breaking sector cannot be fully explored by using, for example, the W+W+W^+W^+ mode alone; all WW→WWWW \rightarrow WW scattering modes must be measured.}Comment: 10 pages, phyzzx, JHU-TIPAC-92001

    Can the Electroweak Symmetry-breaking Sector Be Hidden?

    Full text link
    In a recent paper, Chivukula and Golden claimed that the electroweak symmetry--breaking sector could be hidden if there were many inelastic channels in the longitudinal WWWW scattering process. They presented a model in which the WW's couple to pseudo--Goldstone bosons, which may be difficult to detect experimentally. Because of these inelastic channels, the WWWW interactions do not become strong in the TeV region. We demonstrate that, despite the reduced WWWW elastic amplitudes in this model, the total event rate (∌5000\sim 5000 extra longitudinal W+W−W^+W^- pairs produced in one standard SSC year) does not decrease with an increasing number of inelastic channels, and is roughly the same as in a model with a broad high--energy resonance and no inelastic channels.Comment: 10 pages, phyzzx, JHU-TIPAC-92001

    Symmetry characterization of eigenstates in opal-based photonic crystals

    Full text link
    The complete symmetry characterization of eigenstates in bare opal systems is obtained by means of group theory. This symmetry assignment has allowed us to identify several bands that cannot couple with an incident external plane wave. Our prediction is supported by layer-KKR calculations, which are also performed: the coupling coefficients between bulk modes and externally excited field tend to zero when symmetry properties mismatch.Comment: 7 pages, 5 figures, submitted to Physical Review

    Low Complexity Regularization of Linear Inverse Problems

    Full text link
    Inverse problems and regularization theory is a central theme in contemporary signal processing, where the goal is to reconstruct an unknown signal from partial indirect, and possibly noisy, measurements of it. A now standard method for recovering the unknown signal is to solve a convex optimization problem that enforces some prior knowledge about its structure. This has proved efficient in many problems routinely encountered in imaging sciences, statistics and machine learning. This chapter delivers a review of recent advances in the field where the regularization prior promotes solutions conforming to some notion of simplicity/low-complexity. These priors encompass as popular examples sparsity and group sparsity (to capture the compressibility of natural signals and images), total variation and analysis sparsity (to promote piecewise regularity), and low-rank (as natural extension of sparsity to matrix-valued data). Our aim is to provide a unified treatment of all these regularizations under a single umbrella, namely the theory of partial smoothness. This framework is very general and accommodates all low-complexity regularizers just mentioned, as well as many others. Partial smoothness turns out to be the canonical way to encode low-dimensional models that can be linear spaces or more general smooth manifolds. This review is intended to serve as a one stop shop toward the understanding of the theoretical properties of the so-regularized solutions. It covers a large spectrum including: (i) recovery guarantees and stability to noise, both in terms of ℓ2\ell^2-stability and model (manifold) identification; (ii) sensitivity analysis to perturbations of the parameters involved (in particular the observations), with applications to unbiased risk estimation ; (iii) convergence properties of the forward-backward proximal splitting scheme, that is particularly well suited to solve the corresponding large-scale regularized optimization problem

    Gas injection in a liquid saturated porous medium. Influence of pressurization effects and liquid films

    Get PDF
    We study numerically and experimentally the displacement of a liquid by a gas in a two-dimensional model porous medium. In contrast with previous pore-network studies on drainage in porous media, the gas compressibility is fully taken account. The influence of the gas injection rate on the displacement pattern, breakthrough time and the evolution of the pressure in the gas phase due in part to gas compressibility are investigated. A good agreement is found between the simulations and the experiments as regards the invasion patterns. The agreement is also good on the drainage kinetics when the dynamic liquid films are taken into account

    Phenomenology of the Lense-Thirring effect in the Solar System

    Full text link
    Recent years have seen increasing efforts to directly measure some aspects of the general relativistic gravitomagnetic interaction in several astronomical scenarios in the solar system. After briefly overviewing the concept of gravitomagnetism from a theoretical point of view, we review the performed or proposed attempts to detect the Lense-Thirring effect affecting the orbital motions of natural and artificial bodies in the gravitational fields of the Sun, Earth, Mars and Jupiter. In particular, we will focus on the evaluation of the impact of several sources of systematic uncertainties of dynamical origin to realistically elucidate the present and future perspectives in directly measuring such an elusive relativistic effect.Comment: LaTex, 51 pages, 14 figures, 22 tables. Invited review, to appear in Astrophysics and Space Science (ApSS). Some uncited references in the text now correctly quoted. One reference added. A footnote adde

    Heavy quarkonium: progress, puzzles, and opportunities

    Get PDF
    A golden age for heavy quarkonium physics dawned a decade ago, initiated by the confluence of exciting advances in quantum chromodynamics (QCD) and an explosion of related experimental activity. The early years of this period were chronicled in the Quarkonium Working Group (QWG) CERN Yellow Report (YR) in 2004, which presented a comprehensive review of the status of the field at that time and provided specific recommendations for further progress. However, the broad spectrum of subsequent breakthroughs, surprises, and continuing puzzles could only be partially anticipated. Since the release of the YR, the BESII program concluded only to give birth to BESIII; the BB-factories and CLEO-c flourished; quarkonium production and polarization measurements at HERA and the Tevatron matured; and heavy-ion collisions at RHIC have opened a window on the deconfinement regime. All these experiments leave legacies of quality, precision, and unsolved mysteries for quarkonium physics, and therefore beg for continuing investigations. The plethora of newly-found quarkonium-like states unleashed a flood of theoretical investigations into new forms of matter such as quark-gluon hybrids, mesonic molecules, and tetraquarks. Measurements of the spectroscopy, decays, production, and in-medium behavior of c\bar{c}, b\bar{b}, and b\bar{c} bound states have been shown to validate some theoretical approaches to QCD and highlight lack of quantitative success for others. The intriguing details of quarkonium suppression in heavy-ion collisions that have emerged from RHIC have elevated the importance of separating hot- and cold-nuclear-matter effects in quark-gluon plasma studies. This review systematically addresses all these matters and concludes by prioritizing directions for ongoing and future efforts.Comment: 182 pages, 112 figures. Editors: N. Brambilla, S. Eidelman, B. K. Heltsley, R. Vogt. Section Coordinators: G. T. Bodwin, E. Eichten, A. D. Frawley, A. B. Meyer, R. E. Mitchell, V. Papadimitriou, P. Petreczky, A. A. Petrov, P. Robbe, A. Vair

    Phenomenology of Pc(4380)+, Pc(4450)+ and related states

    Get PDF
    The Pc(4380)+P_c(4380)^+ and Pc(4450)+P_c(4450)^+ states recently discovered at LHCb have masses close to several relevant thresholds, which suggests they can be described in terms of meson-baryon degrees of freedom. This article explores the phenomenology of these states, and their possible partners, from this point of view. Competing models can be distinguished by the masses of the neutral partners which have yet to be observed, and the existence or otherwise of further partners with different isospin, spin, and parity. Future experimental studies in different decay channels can also discriminate among models, using selection rules and algebraic relations among decays. Among the several possible meson-baryon pairs which could be important, one implies that the states are mixtures of isospins 1/2 and 3/2, with characteristic signatures in production and decay. A previous experimental study of a Cabibbo-suppressed decay showed no evidence for the states, and further analysis is required to establish the significance of this non-observation. Several intriguing similarities suggest that Pc(4450)+P_c(4450)^+ is related to the X(3872)X(3872) meson.Comment: 16 pages, 1 figure. Journal version (some very minor changes from arXiv v1

    THEMIS: A Parameter Estimation Framework for the Event Horizon Telescope

    Get PDF
    The Event Horizon Telescope (EHT) provides the unprecedented ability to directly resolve the structure and dynamics of black hole emission regions on scales smaller than their horizons. This has the potential to critically probe the mechanisms by which black holes accrete and launch outflows, and the structure of supermassive black hole spacetimes. However, accessing this information is a formidable analysis challenge for two reasons. First, the EHT natively produces a variety of data types that encode information about the image structure in nontrivial ways; these are subject to a variety of systematic effects associated with very long baseline interferometry and are supplemented by a wide variety of auxiliary data on the primary EHT targets from decades of other observations. Second, models of the emission regions and their interaction with the black hole are complex, highly uncertain, and computationally expensive to construct. As a result, the scientific utilization of EHT observations requires a flexible, extensible, and powerful analysis framework. We present such a framework, Themis, which defines a set of interfaces between models, data, and sampling algorithms that facilitates future development. We describe the design and currently existing components of Themis, how Themis has been validated thus far, and present additional analyses made possible by Themis that illustrate its capabilities. Importantly, we demonstrate that Themis is able to reproduce prior EHT analyses, extend these, and do so in a computationally efficient manner that can efficiently exploit modern high-performance computing facilities. Themis has already been used extensively in the scientific analysis and interpretation of the first EHT observations of M87
    • 

    corecore