542 research outputs found

    Theory of laser ion acceleration from a foil target of nanometers

    Full text link
    A theory for laser ion acceleration is presented to evaluate the maximum ion energy in the interaction of ultrahigh contrast (UHC) intense laser with a nanometer-scale foil. In this regime the energy of ions may be directly related to the laser intensity and subsequent electron dynamics. This leads to a simple analytical expression for the ion energy gain under the laser irradiation of thin targets. Significantly, higher energies for thin targets than for thicker targets are predicted. Theory is concretized to the details of recent experiments which may find its way to compare with these results.Comment: 22 pages 7 figures. will be submitted to NJ

    One-pot Synthesis of Soluble Nanoscale CIGS Photoactive Functional Materials

    Get PDF
    Promising alternatives for solar energy utilization are thin film technologies involving various new materials. This contribution describes an easy and inexpensive synthetic method that can be used to prepare soluble nanoscale triphenyl phosphine-coordinated CIGS (TPP-CIGS) photoactive functional materials. This complex is stable in the solid state under the irradiation of the ambient light, but its solution becomes a little bit unstable under the illumination of the low intensity laser

    Unraveling loss mechanisms arising from energy‐level misalignment between metal halide perovskites and hole transport layers

    Get PDF
    Metal halide perovskites are promising light absorbers for multijunction photovoltaic applications because of their remarkable bandgap tunability, achieved through compositional mixing on the halide site. However, poor energy-level alignment at the interface between wide-bandgap mixed-halide perovskites and charge-extraction layers still causes significant losses in solar-cell performance. Here, the origin of such losses is investigated, focusing on the energy-level misalignment between the valence band maximum and the highest occupied molecular orbital (HOMO) for a commonly employed combination, FA0.83Cs0.17Pb(I1-xBrx)3 with bromide content x ranging from 0 to 1, and poly[bis(4-phenyl)(2,4,6-trimethylphenyl)amine] (PTAA). A combination of time-resolved photoluminescence spectroscopy and numerical modeling of charge-carrier dynamics reveals that open-circuit voltage (VOC) losses associated with a rising energy-level misalignment derive from increasing accumulation of holes in the HOMO of PTAA, which then subsequently recombine non-radiatively across the interface via interfacial defects. Simulations assuming an ideal choice of hole-transport material to pair with FA0.83Cs0.17Pb(I1-xBrx)3 show that such VOC losses originating from energy-level misalignment can be reduced by up to 70 mV. These findings highlight the urgent need for tailored charge-extraction materials exhibiting improved energy-level alignment with wide-bandgap mixed-halide perovskites to enable solar cells with improved power conversion efficiencies

    Differential impact of glucose administered intravenously and orally on circulating mir-375 levels in human subjects

    Get PDF
    Background: To date, numerous nucleic acid species have been detected in the systemic circulation including microRNAs (miRNAs); however their functional role in this compartment remains unclear. Objective: The aim of this study was to determine whether systemic levels of miRNAs abundant in blood, including the neuroendocrine tissue-enriched miR-375, are altered in response to a glucose challenge. Design: Twelve healthy males were recruited for an acute cross-over study which consisted of two tests each following an eight-hour fasting period. An oral glucose tolerance test (OGTT) was performed and blood samples were collected over a 3-hour period. Following a period of at least one week, the same participants were administered an isoglycemic intravenous glucose infusion (IIGI) with the same blood collection protocol. Results: The glucose response curve following the IIGI mimicked that obtained after the OGTT, but as expected systemic insulin levels were lower during the IIGI compared to the OGTT (P<0.05). MiR-375 levels in circulation were increased only in response to an OGTT and not during an IIGI. In addition, the response to the OGTT also coincided with the transient increase of circulating glucagon-like peptide-1 (GLP-1), glucagon-like peptide-2 (GLP-2), and glucose-dependent insulinotropic polypeptide (GIP). Conclusions: The present findings show levels of miR-375 increase following administration of an OGTT and in light of its enrichment in cells of the gut, suggest that the gastrointestinal tract may play a significant role to the abundance and function of this microRNA in the blood

    Insights into the electrochemical reduction products and processes in silica anodes for next-generation lithium-ion batteries

    Get PDF
    The use of silica as a lithium‐ion battery anode material requires a pretreatment step to induce electrochemical activity. The partially reversible electrochemical reduction reaction between silica and lithium has been postulated to produce silicon, which can subsequently reversibly react with lithium, providing stable capacities higher than graphite materials. Up to now, the electrochemical reduction pathway and the nature of the products were unknown, thereby hampering the design, optimization, and wider uptake of silica‐based anodes. Here, the electrochemical reduction pathway is uncovered and, for the first time, elemental silicon is identified as a reduction product. These insights, gleaned from analysis of the current response and capacity increase during reduction, conclusively demonstrated that silica must be reduced to introduce reversible capacity and the highest capacities of 600 mAh g−1 are achieved by using a constant load discharge at elevated temperature. Characterization via total scattering X‐ray pair distribution function analysis reveal the reduction products are amorphous in nature, highlighting the need for local structural methods to uncover vital information often inaccessible by traditional diffraction. These insights contribute toward understanding the electrochemical reduction of silica and can inform the development of pretreatment processes to enable their incorporation into next‐generation lithium‐ion batteries

    Solar Intranetwork Magnetic Elements: bipolar flux appearance

    Full text link
    The current study aims to quantify characteristic features of bipolar flux appearance of solar intranetwork (IN) magnetic elements. To attack such a problem, we use the Narrow-band Filter Imager (NFI) magnetograms from the Solar Optical Telescope (SOT) on board \emph{Hinode}; these data are from quiet and an enhanced network areas. Cluster emergence of mixed polarities and IN ephemeral regions (ERs) are the most conspicuous forms of bipolar flux appearance within the network. Each of the clusters is characterized by a few well-developed ERs that are partially or fully co-aligned in magnetic axis orientation. On average, the sampled IN ERs have total maximum unsigned flux of several 10^{17} Mx, separation of 3-4 arcsec, and a lifetime of 10-15 minutes. The smallest IN ERs have a maximum unsigned flux of several 10^{16} Mx, separations less than 1 arcsec, and lifetimes as short as 5 minutes. Most IN ERs exhibit a rotation of their magnetic axis of more than 10 degrees during flux emergence. Peculiar flux appearance, e.g., bipole shrinkage followed by growth or the reverse, is not unusual. A few examples show repeated shrinkage-growth or growth-shrinkage, like magnetic floats in the dynamic photosphere. The observed bipolar behavior seems to carry rich information on magneto-convection in the sub-photospheric layer.Comment: 26 pages, 14 figure

    Living donor liver transplantation with extensive caval thrombectomy for acute-on-chronic Budd-Chiari syndrome.

    Get PDF
    The key consideration when performing living donor liver transplantation (LDLT) in patients with Budd-Chiari syndrome (BCS) is careful management of a stenotic or occluded inferior vena cava (IVC), because it is not possible to replace the recipient stenotic or occluded IVC with donor IVC as in cadaver donor transplantation. We describe how we performed LDLT with extensive thrombectomy in a patient with acute-on-chronic BCS with a totally thrombosed retrohepatic IVC. The operation was successful and the patient remains well, with follow-up images showing a patent IVC and hepatic veins. To our knowledge, LDLT for a BCS patient with severe extensive caval thrombus has never been reported before. We consider that the successful outcome of this patient clearly demonstrates the feasibility of our technique of extensive thrombectomy, without a vessel graft, to manage a stenotic or occluded IVC in LDLT in patients with BCS

    Heavy quarkonium: progress, puzzles, and opportunities

    Get PDF
    A golden age for heavy quarkonium physics dawned a decade ago, initiated by the confluence of exciting advances in quantum chromodynamics (QCD) and an explosion of related experimental activity. The early years of this period were chronicled in the Quarkonium Working Group (QWG) CERN Yellow Report (YR) in 2004, which presented a comprehensive review of the status of the field at that time and provided specific recommendations for further progress. However, the broad spectrum of subsequent breakthroughs, surprises, and continuing puzzles could only be partially anticipated. Since the release of the YR, the BESII program concluded only to give birth to BESIII; the BB-factories and CLEO-c flourished; quarkonium production and polarization measurements at HERA and the Tevatron matured; and heavy-ion collisions at RHIC have opened a window on the deconfinement regime. All these experiments leave legacies of quality, precision, and unsolved mysteries for quarkonium physics, and therefore beg for continuing investigations. The plethora of newly-found quarkonium-like states unleashed a flood of theoretical investigations into new forms of matter such as quark-gluon hybrids, mesonic molecules, and tetraquarks. Measurements of the spectroscopy, decays, production, and in-medium behavior of c\bar{c}, b\bar{b}, and b\bar{c} bound states have been shown to validate some theoretical approaches to QCD and highlight lack of quantitative success for others. The intriguing details of quarkonium suppression in heavy-ion collisions that have emerged from RHIC have elevated the importance of separating hot- and cold-nuclear-matter effects in quark-gluon plasma studies. This review systematically addresses all these matters and concludes by prioritizing directions for ongoing and future efforts.Comment: 182 pages, 112 figures. Editors: N. Brambilla, S. Eidelman, B. K. Heltsley, R. Vogt. Section Coordinators: G. T. Bodwin, E. Eichten, A. D. Frawley, A. B. Meyer, R. E. Mitchell, V. Papadimitriou, P. Petreczky, A. A. Petrov, P. Robbe, A. Vair

    Current assessment of the Red Rectangle band problem

    Full text link
    In this paper we discuss our insights into several key problems in the identification of the Red Rectangle Bands (RRBs). We have combined three independent sets of observations in order to try to define the constraints guiding the bands. We provide a summary of the general behavior of the bands and review the evidence for a molecular origin of the bands. The extent, composition, and possible absorption effects of the bands are discussed. Comparison spectra of the strongest band obtained at three different spectral resolutions suggests that an intrinsic line width of individual rotational lines can be deduced. Spectroscopic models of several relatively simple molecules were examined in order to investigate where the current data are weak. Suggestions are made for future studies to enhance our understanding of these enigmatic bands
    corecore