1,530 research outputs found

    135 MeV Proton Scattering from 13-C

    Get PDF
    This work was supported by the National Science Foundation Grant NSF PHY 78-22774 A02 & A03 and by Indiana Universit

    Analyzing Power Measurements for 13-C(p,p') at 120 MeV

    Get PDF
    This work was supported by the National Science Foundation Grant NSF PHY 81-14339 and by Indiana Universit

    Biogeochemical processes in the active layer and permafrost of a high Arctic fjord valley

    Get PDF
    Warming of ground is causing microbial decomposition of previously frozen sedimentary organic carbon in Arctic permafrost. However, the heterogeneity of the permafrost landscape and its hydrological processes result in different biogeochemical processes across relatively small scales, with implications for predicting the timing and magnitude of permafrost carbon emissions. The biogeochemical processes of iron- and sulfate-reduction produce carbon dioxide and suppress methanogenesis. Hence, in this study, the biogeochemical processes occurring in the active layer and permafrost of a high Arctic fjord valley in Svalbard are identified from the geochemical and stable isotope analysis of aqueous and particulate fractions in sediment cores collected from ice-wedge polygons with contrasting water content. In the drier polygons, only a small concentration of organic carbon (<5.40 dry weight%) has accumulated. Sediment cores from these drier polygons have aqueous and solid phase chemistries that imply sulfide oxidation coupled to carbonate and silicate dissolution, leading to high concentrations of aqueous iron and sulfate in the pore water profiles. These results are corroborated by δ34S and δ18O values of sulfate in active layer pore waters, which indicate the oxidative weathering of sedimentary pyrite utilising either oxygen or ferric iron as oxidising agents. Conversely, in the sediments of the consistently water-saturated polygons, which contain a high content of organic carbon (up to 45 dry weight%), the formation of pyrite and siderite occurred via the reduction of iron and sulfate. δ34S and δ18O values of sulfate in active layer pore waters from these water-saturated polygons display a strong positive correlation (R2 = 0.98), supporting the importance of sulfate reduction in removing sulfate from the pore water. The significant contrast in the dominant biogeochemical processes between the water-saturated and drier polygons indicates that small-scale hydrological variability between polygons induces large differences in the concentration of organic carbon and in the cycling of iron and sulfur, with ramifications for the decomposition pathway of organic carbon in permafrost environments

    Protein Kinase B Regulates T Lymphocyte Survival, Nuclear Factor κb Activation, and Bcl-XL Levels in Vivo

    Get PDF
    The serine/threonine kinase protein kinase B (PKB)/Akt mediates cell survival in a variety of systems. We have generated transgenic mice expressing a constitutively active form of PKB (gag-PKB) to examine the effects of PKB activity on T lymphocyte survival. Thymocytes and mature T cells overexpressing gag-PKB displayed increased active PKB, enhanced viability in culture, and resistance to a variety of apoptotic stimuli. PKB activity prolonged the survival of CD4+CD8+ double positive (DP) thymocytes in fetal thymic organ culture, but was unable to prevent antigen-induced clonal deletion of thymocytes expressing the major histocompatibility complex class I–restricted P14 T cell receptor (TCR). In mature T lymphocytes, PKB can be activated in response to TCR stimulation, and peptide-antigen–specific proliferation is enhanced in T cells expressing the gag-PKB transgene. Both thymocytes and T cells overexpressing gag-PKB displayed elevated levels of the antiapoptotic molecule Bcl-XL. In addition, the activation of peripheral T cells led to enhanced nuclear factor (NF)-κB activation via accelerated degradation of the NF-κB inhibitory protein IκBα. Our data highlight a physiological role for PKB in promoting survival of DP thymocytes and mature T cells, and provide evidence for the direct association of three major survival molecules (PKB, Bcl-XL, and NF-κB) in vivo in T lymphocytes

    Study of Three-Particle-One-Hole States in 14-C with the 11-B(a,p)14-C Reaction at 120 MeV

    Get PDF
    This work was supported by the National Science Foundation Grant NSF PHY 81-14339 and by Indiana Universit

    Meaning in life: investigating protective and risk factors for harmful alcohol consumption

    Get PDF
    Background Individuals with greater meaning in life tend to consume less alcohol. However, research elucidating pathways through which meaning in life influences consumption is lacking. Behavioral economic theories posit that distortions in valuation processes, whilst negative reinforcement models posit that avoidance or regulation of negative internal states, are central in decisions to consume alcohol. Method Pre-registered, cross-sectional design. Five hundred forty-six regular alcohol consumers (≥18 years old) completed an online questionnaire which asked about alcohol use, meaning in life, alcohol-free reinforcement, alcohol value, depressive symptoms, and drinking to cope motives. Results Presence of meaning had a significant negative association with AUDIT scores (β = −.26, p .53). Subsequent path analyses revealed a significant indirect effect of presence of meaning on AUDIT scores through lower alcohol value (95% CI = −.17 to −.08) and drinking to cope (95% CI = −.07 to −.00), and a serial mediation effect through both lower depressive symptoms and drinking to cope (95% CI = −.09 to −.04). Although search for meaning was not a direct predictor of AUDIT scores, there was a significant indirect effect through greater drinking to cope (95% CI = .01 to .06) and a serial mediation effect through both greater depressive symptoms and drinking to cope (95% CI = .01 to .04). Conclusions Meaning in life subscales predict alcohol consumption indirectly via individual differences in alcohol value, depressive symptoms, and drinking to cope

    S-branes and (Anti-)Bubbles in (A)dS Space

    Full text link
    We describe the construction of new locally asymptotically (A)dS geometries with relevance for the AdS/CFT and dS/CFT correspondences. Our approach is to obtain new solutions by analytically continuing black hole solutions. A basic consideration of the method of continuation indicates that these solutions come in three classes: S-branes, bubbles and anti-bubbles. A generalization to spinning or twisted solutions can yield spacetimes with complicated horizon structures. Interestingly enough, several of these spacetimes are nonsingular.Comment: 35 pages, 12 figures. V2: JHEP style, expanded reference

    Predicting the cost of the consequences of a large nuclear accident in the UK

    Get PDF
    Nuclear accidents have the potential to lead to significant off-site effects that require actions to minimise the radiological impacts on people. Such countermeasures may include sheltering, evacuation, restrictions on the sale of locally-grown food, and long-term relocation of the population amongst others. Countries with nuclear facilities draw up emergency preparedness plans, and put in place such provisions as distributing instructions and iodine prophylaxis to the local population. Their plans are applied in simulated exercises on a regular basis. The costs associated with emergency preparedness and the safety provisions to reduce the likelihood of an accident, and/or mitigate the consequences, are justified on the basis of the health risks and accident costs averted. There is, of course, only limited actual experience to indicate the likely costs so that much of the costing of accidents is based on calculations. This paper reviews the methodologies used, in particular the approach that has been developed in the UK, to appraise the costs of a hypothetical nuclear accident. Results of analysing a hypothetical nuclear accident at a fictitious reactor site within the United Kingdom are discussed in relation to the accidents at Three Mile Island 2, Chernobyl and Fukushima Dai-ichi

    Considerations in relation to off-site emergency procedures and response for nuclear accidents

    Get PDF
    The operation of nuclear facilities has, fortunately, not led to many accidents with off-site consequences. However, it is well-recognised that should a large release of radioactivity occur, the effects in the surrounding area and population will be significant. These effects can be mitigated by developing emergency preparedness and response plans prior to the operation of the nuclear facility that can be exercised regularly and implemented if an accident occurs. This review paper details the various stages of a nuclear accident and the corresponding aspects of an emergency preparedness plan that are relevant to these stages, both from a UK and international perspective. The paper also details how certain aspects of emergency preparedness have been affected by the accident at Fukushima Dai-ichi and as a point of comparison how emergency management plans were implemented following the accidents at Three Mile Island 2 and Chernobyl. In addition, the UK’s economic costing model for nuclear accidents COCO-2, and the UK’s Level-3 Probabilistic Safety Assessment code “PACE” are introduced. Finally, the factors that affect the economic impact of a nuclear accident, especially from a UK standpoint, are described
    corecore