75 research outputs found
Considerations in relation to off-site emergency procedures and response for nuclear accidents
The operation of nuclear facilities has, fortunately, not led to many accidents with off-site consequences. However, it is well-recognised that should a large release of radioactivity occur, the effects in the surrounding area and population will be significant. These effects can be mitigated by developing emergency preparedness and response plans prior to the operation of the nuclear facility that can be exercised regularly and implemented if an accident occurs. This review paper details the various stages of a nuclear accident and the corresponding aspects of an emergency preparedness plan that are relevant to these stages, both from a UK and international perspective. The paper also details how certain aspects of emergency preparedness have been affected by the accident at Fukushima Dai-ichi and as a point of comparison how emergency management plans were implemented following the accidents at Three Mile Island 2 and Chernobyl. In addition, the UK’s economic costing model for nuclear accidents COCO-2, and the UK’s Level-3 Probabilistic Safety Assessment code “PACE” are introduced. Finally, the factors that affect the economic impact of a nuclear accident, especially from a UK standpoint, are described
The PHENIX Experiment at RHIC
The physics emphases of the PHENIX collaboration and the design and current
status of the PHENIX detector are discussed. The plan of the collaboration for
making the most effective use of the available luminosity in the first years of
RHIC operation is also presented.Comment: 5 pages, 1 figure. Further details of the PHENIX physics program
available at http://www.rhic.bnl.gov/phenix
Low-lying octupole isovector excitation in Nd-144
International audienceThe nature of low-lying 3− levels in Nd144 was investigated in the Nd143(n,γγ) cold neutron-capture reaction. The combination of the high neutron flux from the research reactor at the Institut Laue-Langevin and the high γ-ray detection efficiency of the EXILL setup allowed the recording of γγ coincidences. From the coincidence data precise branching ratios were extracted. Furthermore, the octagonal symmetry of the setup allowed angular-distribution measurements to determine multipole-mixing ratios. Additionally, in a second measurement the ultra-high resolution spectrometer GAMS6 was employed to conduct lifetime measurements using the gamma-ray induced Doppler-shift technique (GRID). The confirmed strong M1 component in the 33−→31− decay strongly supports the assignment of the 33− level at 2779keV as low-lying isovector octupole excitation. Microscopic calculations within the quasiparticle phonon model confirm an isovector component in the wave function of the 33− level, firmly establishing this fundamental mode of nuclear excitation in near-spherical nuclei
The genetic architecture of type 2 diabetes
The genetic architecture of common traits, including the number, frequency, and effect sizes of inherited variants that contribute to individual risk, has been long debated. Genome-wide association studies have identified scores of common variants associated with type 2 diabetes, but in aggregate, these explain only a fraction of heritability. To test the hypothesis that lower-frequency variants explain much of the remainder, the GoT2D and T2D-GENES consortia performed whole genome sequencing in 2,657 Europeans with and without diabetes, and exome sequencing in a total of 12,940 subjects from five ancestral groups. To increase statistical power, we expanded sample size via genotyping and imputation in a further 111,548 subjects. Variants associated with type 2 diabetes after sequencing were overwhelmingly common and most fell within regions previously identified by genome-wide association studies. Comprehensive enumeration of sequence variation is necessary to identify functional alleles that provide important clues to disease pathophysiology, but large-scale sequencing does not support a major role for lower-frequency variants in predisposition to type 2 diabetes
Cointegration analysis with state space models
Abstract: This paper presents and exemplifies results developed for cointegration analysis with state space models by Bauer and Wagner in a series of papers. Unit root processes, cointegration and polynomial cointegration are defined. Based upon these definitions the major part of the paper discusses how state space models, which are equivalent to VARMA models, can be fruitfully employed for cointegration analysis. By means of detailing the cases most relevant for empirical applications, the I(1), MFI(1) and I(2) cases, a canonical representation is developed and thereafter some available statistical results are briefly mentioned.
The trans-ancestral genomic architecture of glycemic traits
Glycemic traits are used to diagnose and monitor type 2 diabetes and cardiometabolic health. To date, most genetic studies of glycemic traits have focused on individuals of European ancestry. Here we aggregated genome-wide association studies comprising up to 281,416 individuals without diabetes (30% non-European ancestry) for whom fasting glucose, 2-h glucose after an oral glucose challenge, glycated hemoglobin and fasting insulin data were available. Trans-ancestry and single-ancestry meta-analyses identified 242 loci (99 novel; P < 5 x 10(-8)), 80% of which had no significant evidence of between-ancestry heterogeneity. Analyses restricted to individuals of European ancestry with equivalent sample size would have led to 24 fewer new loci. Compared with single-ancestry analyses, equivalent-sized trans-ancestry fine-mapping reduced the number of estimated variants in 99% credible sets by a median of 37.5%. Genomic-feature, gene-expression and gene-set analyses revealed distinct biological signatures for each trait, highlighting different underlying biological pathways. Our results increase our understanding of diabetes pathophysiology by using trans-ancestry studies for improved power and resolution.A trans-ancestry meta-analysis of GWAS of glycemic traits in up to 281,416 individuals identifies 99 novel loci, of which one quarter was found due to the multi-ancestry approach, which also improves fine-mapping of credible variant sets.Diabetes mellitus: pathophysiological changes and therap
Associations of obesity and circulating insulin and glucose with breast cancer risk: a Mendelian randomization analysis.
BACKGROUND: In addition to the established association between general obesity and breast cancer risk, central obesity and circulating fasting insulin and glucose have been linked to the development of this common malignancy. Findings from previous studies, however, have been inconsistent, and the nature of the associations is unclear. METHODS: We conducted Mendelian randomization analyses to evaluate the association of breast cancer risk, using genetic instruments, with fasting insulin, fasting glucose, 2-h glucose, body mass index (BMI) and BMI-adjusted waist-hip-ratio (WHRadj BMI). We first confirmed the association of these instruments with type 2 diabetes risk in a large diabetes genome-wide association study consortium. We then investigated their associations with breast cancer risk using individual-level data obtained from 98 842 cases and 83 464 controls of European descent in the Breast Cancer Association Consortium. RESULTS: All sets of instruments were associated with risk of type 2 diabetes. Associations with breast cancer risk were found for genetically predicted fasting insulin [odds ratio (OR) = 1.71 per standard deviation (SD) increase, 95% confidence interval (CI) = 1.26-2.31, p = 5.09 × 10-4], 2-h glucose (OR = 1.80 per SD increase, 95% CI = 1.3 0-2.49, p = 4.02 × 10-4), BMI (OR = 0.70 per 5-unit increase, 95% CI = 0.65-0.76, p = 5.05 × 10-19) and WHRadj BMI (OR = 0.85, 95% CI = 0.79-0.91, p = 9.22 × 10-6). Stratified analyses showed that genetically predicted fasting insulin was more closely related to risk of estrogen-receptor [ER]-positive cancer, whereas the associations with instruments of 2-h glucose, BMI and WHRadj BMI were consistent regardless of age, menopausal status, estrogen receptor status and family history of breast cancer. CONCLUSIONS: We confirmed the previously reported inverse association of genetically predicted BMI with breast cancer risk, and showed a positive association of genetically predicted fasting insulin and 2-h glucose and an inverse association of WHRadj BMI with breast cancer risk. Our study suggests that genetically determined obesity and glucose/insulin-related traits have an important role in the aetiology of breast cancer
Inspection of 56Fe γ-Ray angular distributions as a function of incident neutron energy using optical model approaches
Neutron inelastic scattering cross sections measured directly through (n,n) or deduced from γ-ray production cross sections following inelastic neutron scattering (n,n′γ) are a focus of basic and applied research at the University of Kentucky Accelerator Laboratory (www.pa.uky.edu/accelerator). For nuclear data applications, angle-integrated cross sections are desired over a wide range of fast neutron energies. Several days of experimental beam time are required for a data set at each incident neutron energy, which limits the number of angular distributions that can be measured in a reasonable amount of time. Approximations can be employed to generate cross sections with a higher energy resolution, since at 125o, the a2P2 term of the Legendre expansion is identically zero and the a4P4 is assumed to be very small. Provided this assumption is true, a single measurement at 125o would produce the γ-ray production cross section. This project tests these assumptions and energy dependences using the codes CINDY/SCAT and TALYS/ECIS06/SCAT. It is found that care must be taken when interpreting γ-ray excitation functions as cross sections when the incident neutron energy is < 1000 keV above threshold or before the onset of feeding
Inspection of
Neutron inelastic scattering cross sections measured directly through (n,n) or deduced from γ-ray production cross sections following inelastic neutron scattering (n,n′γ) are a focus of basic and applied research at the University of Kentucky Accelerator Laboratory (www.pa.uky.edu/accelerato
- …