300 research outputs found

    Dysfunction of the Heteromeric KV7.3/KV7.5 Potassium Channel is Associated with Autism Spectrum Disorders

    Get PDF
    Heterozygous mutations in the KCNQ3 gene on chromosome 8q24 encoding the voltage-gated potassium channel KV7.3 subunit have previously been associated with rolandic epilepsy and idiopathic generalized epilepsy (IGE) including benign neonatal convulsions. We identified a de novo t(3;8) (q21;q24) translocation truncating KCNQ3 in a boy with childhood autism. In addition, we identified a c.1720C > T [p.P574S] nucleotide change in three unrelated individuals with childhood autism and no history of convulsions. This nucleotide change was previously reported in patients with rolandic epilepsy or IGE and has now been annotated as a very rare SNP (rs74582884) in dbSNP. The p.P574S KV7.3 variant significantly reduced potassium current amplitude in Xenopus laevis oocytes when co-expressed with KV7.5 but not with KV7.2 or KV7.4. The nucleotide change did not affect trafficking of heteromeric mutant KV7.3/2, KV7.3/4, or KV7.3/5 channels in HEK 293 cells or primary rat hippocampal neurons. Our results suggest that dysfunction of the heteromeric KV7.3/5 channel is implicated in the pathogenesis of some forms of autism spectrum disorders, epilepsy, and possibly other psychiatric disorders and therefore, KCNQ3 and KCNQ5 are suggested as candidate genes for these disorders

    Cancer diagnostic profile in children with structural birth defects: An assessment in 15,000 childhood cancer cases

    Get PDF
    Background: Birth defects are established risk factors for childhood cancer. Nonetheless, cancer epidemiology in children with birth defects is not well characterized. Methods: Using data from population-based registries in 4 US states, this study compared children with cancer but no birth defects (n = 13,111) with children with cancer and 1 or more nonsyndromic birth defects (n = 1616). The objective was to evaluate cancer diagnostic characteristics, including tumor type, age at diagnosis, and stage at diagnosis. Results: Compared with the general population of children with cancer, children with birth defects were diagnosed with more embryonal tumors (26.6% vs 18.7%; q < 0.001), including neuroblastoma (12.5% vs 8.2%; q < 0.001) and hepatoblastoma (5.0% vs 1.3%; q < 0.001), but fewer hematologic malignancies, including acute lymphoblastic leukemia (12.4% vs 24.4%; q < 0.001). In age-stratified analyses, differences in tumor type were evident among children younger than 1 year and children 1 to 4 years old, but they were attenuated among children 5 years of age or older. The age at diagnosis was younger in children with birth defects for most cancers, including leukemia, lymphoma, astrocytoma, medulloblastoma, ependymoma, embryonal tumors, and germ cell tumors (all q < 0.05). Conclusions: The results indicate possible etiologic heterogeneity in children with birth defects, have implications for future surveillance efforts, and raise the possibility of differential cancer ascertainment in children with birth defects. Lay Summary: Scientific studies suggest that children with birth defects are at increased risk for cancer. However, these studies have not been able to determine whether important tumor characteristics, such as the type of tumor diagnosed, the age at which the tumor is diagnosed, and the degree to which the tumor has spread at the time of diagnosis, are different for children with birth defects and children without birth defects. This study attempts to answer these important questions. By doing so, it may help scientists and physicians to understand the causes of cancer in children with birth defects and diagnose cancer at earlier stages when it is more treatable
    corecore