10 research outputs found

    Differential Sulfation Remodelling of Heparan Sulfate by Extracellular 6-O-Sulfatases Regulates Fibroblast Growth Factor-Induced Boundary Formation by Glial Cells: Implications for Glial Cell Transplantation

    Full text link
    Previously, it has been shown that rat Schwann cells (SCs), but not olfactory ensheathing cells (OECs), form a boundary with astrocytes, due to a SC-specific secreted factor. Here, we identify highly sulfated heparan sulfates (HSs) and fibroblast growth factors (FGFs) 1 and 9 as possible determinants of boundary formation induced by rat SCs. Disaccharide analysis of HS in SC-conditioned and rat OEC-conditioned media showed that SCs secrete more highly sulfated HS than OECs. The dependence of the boundary-forming activity on high levels of sulfation was confirmed using a panel of semisynthetic modified heparins with variable levels of sulfation. Furthermore, extracellular HS 6-O-endosulfatase enzymes, Sulf 1 and Sulf 2, were expressed at a significantly lower level by SCs compared with OECs, and siRNA reduction of Sulfs in OECs was, in itself, sufficient to induce boundary formation. This demonstrates a key role for remodelling (reduction) of HS 6-O-sulfation by OECs, compared with SCs, to suppress boundary formation. Furthermore, specific anti-FGF1 and anti-FGF9 antibodies disrupted SC–astrocyte boundary formation, supporting a role for an HS sulfation-dependent FGF signaling mechanism via FGF receptors on astrocytes. We propose a model in which FGF1 and FGF9 signaling is differentially modulated by patterns of glial cell HS sulfation, dependent on Sulf 1 and Sulf 2 expression, to control FGF receptor 3-IIIb-mediated astrocytic responses. Moreover, these data suggest manipulation of HS sulfation after CNS injury as a potential novel approach for therapeutic intervention in CNS repair

    Atlas construction and image analysis using statistical cardiac models

    Get PDF
    International audienceThis paper presents a brief overview of current trends in the construction of population and multi-modal heart atlases in our group and their application to atlas-based cardiac image analysis. The technical challenges around the construction of these atlases are organized around two main axes: groupwise image registration of anatomical, motion and fiber images and construction of statistical shape models. Application-wise, this paper focuses on the extraction of atlas-based biomarkers for the detection of local shape or motion abnormalities, addressing several cardiac applications where the extracted information is used to study and grade different pathologies. The paper is concluded with a discussion about the role of statistical atlases in the integration of multiple information sources and the potential this can bring to in-silico simulations

    Differential sulfation remodelling of heparan sulfate by extracellular 6-O-sulfatases regulates fibroblast growth factor-induced boundary formation by glial cells: implications for glial cell transplantation

    No full text
    Previously, it has been shown that rat Schwann cells (SCs), but not olfactory ensheathing cells (OECs), form a boundary with astrocytes, due to a SC-specific secreted factor. Here, we identify highly sulfated heparan sulfates (HSs) and fibroblast growth factors (FGFs) 1 and 9 as possible determinants of boundary formation induced by rat SCs. Disaccharide analysis of HS in SC-conditioned and rat OEC-conditioned media showed that SCs secrete more highly sulfated HS than OECs. The dependence of the boundary-forming activity on high levels of sulfation was confirmed using a panel of semisynthetic modified heparins with variable levels of sulfation. Furthermore, extracellular HS 6-O-endosulfatase enzymes, Sulf 1 and Sulf 2, were expressed at a significantly lower level by SCs compared with OECs, and siRNA reduction of Sulfs in OECs was, in itself, sufficient to induce boundary formation. This demonstrates a key role for remodelling (reduction) of HS 6-O-sulfation by OECs, compared with SCs, to suppress boundary formation. Furthermore, specific anti-FGF1 and anti-FGF9 antibodies disrupted SC–astrocyte boundary formation, supporting a role for an HS sulfation-dependent FGF signaling mechanism via FGF receptors on astrocytes. We propose a model in which FGF1 and FGF9 signaling is differentially modulated by patterns of glial cell HS sulfation, dependent on Sulf 1 and Sulf 2 expression, to control FGF receptor 3-IIIb-mediated astrocytic responses. Moreover, these data suggest manipulation of HS sulfation after CNS injury as a potential novel approach for therapeutic intervention in CNS repair

    Whole body vibration exercise : are vibrations good for you ?

    No full text
    Heparan sulphate proteoglycans (HSPGs) exist in pancreatic beta cells, and HS seems to modulate important interactions in the islet microenvironment. However, the intra-islet structures of HS in health or altered glucose homeostasis are currently unknown. Here we show that distinct spatial distribution of HS motifs is present in islets in the adult, that intra-islet HS motifs are mostly conserved between rodents and humans, and that HS is abundant in glucagon producing islet alpha cells. In beta cells HS is characterised by 2-O, 6-O and N-sulphated moieties, whereas HS in alpha cells is N-acetylated, N-, and 2-O sulphated and low in 6-O groups. Differential expression of three HS modifying genes in alpha and beta cells was observed and may account for the different HS patterns. Furthermore, we found that FGF1 and FGF2 were present in alpha cells, whereas functional FGFRs exist in beta cells, but not in the alpha cell line aTC1-6, or in primary alpha cells in islets. FGF1 induced signalling was dependent on 2-O, and 6-O HS sulphation in beta cells, and HS desulphation reduced beta cell proliferation and potentiated oxidant induced apoptosis. In leptin resistant animals and in islets from streptozotocin treated rats there was a reduction in alpha cell HS expression. These data demonstrate the distinct HS expression patterns in alpha and beta islet cells and propose a novel role for alpha cells as a source of paracrine FGF ligands to neighbouring beta cells with specific cell-associated HS domains mediating the activation and diffusion of paracrine ligands
    corecore