1,271 research outputs found

    Beyond Consistency and Substitutability

    Get PDF
    International audienceElimination of inconsistent values in instances of the constraint satisfaction problem (CSP) conserves all solutions. Elimination of substitutable values conserves at least one solution. We show that certain values which are neither inconsistent nor substitutable can also be deleted while conserving at least one solution. This allows us to state novel rules for the elimination of values in binary CSP. From a practical point of view, we show that one such rule can be applied in the same asymptotic time complexity as neighbourhood substitution but is strictly stronger. An alternative to the elimination of values from domains is the elimination of variables. We give novel satisfiability-preserving variable elimination operations. In each case we show that if the instance is satisfiable, then a solution to the original instance can always be recovered in low-order polynomial time from a solution to the reduced instance

    Carrier concentrations in Bi_{2}Sr_{2-z}La_{z}CuO_{6+\delta} single crystals and their relation to Hall coefficient and thermopower

    Full text link
    We measured the thermopower S and the Hall coefficients R_H of Bi_{2}Sr_{2-z}La_{z}CuO_{6+\delta} (BSLCO) single crystals in a wide doping range, in an effort to identify the actual hole concentrations per Cu, p, in this system. It is found that the "universal" relation between the room-temperature thermopower and T_c does not hold in the BSLCO system. Instead, comparison of the temperature-dependent R_H data with other cuprate systems is used as a tool to identify the actual p value. To justify this approach, we compare normalized R_H(T) data of BSLCO, La_{2-x}Sr_{x}CuO_{4} (LSCO), YBa_{2}Cu_{3}O_{y}, and Tl_{2}Ba_{2}CuO_{6+\delta}, and demonstrate that the R_H(T) data of the LSCO system can be used as a template for the estimation of p. The resulting phase diagram of p vs T_c for BSLCO suggests that T_c is anomalously suppressed in the underdoped samples, becoming zero at around p ~ 0.10, while the optimum T_c is achieved at p ~ 0.16 as expected.Comment: 4 pages including 5 figures, accepted for publication in Phys. Rev. B, Rapid Communication

    Covariant Effective Action and One-Loop Renormalization of 2D Dilaton Gravity with Fermionic Matter

    Full text link
    Two dimensional dilaton gravity interacting with a four-fermion model and scalars is investigated, all the coefficients of the Lagrangian being arbitrary functions of the dilaton field. The one-loop covariant effective action for 2D dilaton gravity with Majorana spinors (including the four-fermion interaction) is obtained, and the technical problems which appear in an attempt at generalizing such calculations to the case of the most general four-fermion model described by Dirac fermions are discussed. A solution to these problems is found, based on its reduction to the Majorana spinor case. The general covariant effective action for 2D dilaton gravity with the four-fermion model described by Dirac spinors is given. The one-loop renormalization of dilaton gravity with Majorana spinors is carried out and the specific conditions for multiplicative renormalizability are found. A comparison with the same theory but with a classical gravitational field is done.Comment: LaTeX, 25 pages, july 2

    Temperature dependence of the spin and orbital magnetization density in Sm1−xGdxAl2Sm_{1-x}Gd_{x} Al_{2} around the spin-orbital compensation point

    Full text link
    Non-resonant ferromagnetic x-ray diffraction has been used to separate the spin and orbital contribution to the magnetization density of the proposed zero-moment ferromagnet Sm0.982Gd0.018Al2Sm_{0.982}Gd_{0.018} Al_{2}. The alignment of the spin and orbital moments relative to the net magnetization shows a sign reversal at 84K, the compensation temperature. Below this temperature the orbital moment is larger than the spin moment, and vice versa above it. This result implies that the compensation mechanism is driven by the different temperature dependencies of the 4f4f spin and orbital moments. Specific heat data indicate that the system remains ferromagnetically ordered throughout

    Magneto-Transport Properties of Doped RuSr2_2GdCu2_2O8_8

    Get PDF
    RuSr2_2GdCu2_2O8_8, in which magnetic order and superconductivity coexist with TMagneticT_{Magnetic}≫\ggTcT_c, is a complex material which poses new and important questions to our understanding of the interplay between magnetic and superconducting (SC) order. Resistivity, Hall effect and thermopower measurements on sintered ceramic RuSr2_2GdCu2_2O8_8 are presented, together with results on a broad range of substituted analogues. The Hall effect and thermopower both show anomalous decreases below TMagneticT_{Magnetic} which may be explained within a simple two-band model by a transition from localized to more itinerant behavior in the RuO2_2 layer at TMagneticT_{Magnetic}.Comment: 10 pages, 7 figures, submitted to Phys. Rev. B., correspondence to [email protected]

    The effect of a nonlinear energy sink on the gust response of a wing

    Get PDF
    In this paper, the potential effectiveness of a nonlinear energy sink (NES) to absorb the energy from a wing that is vibrating as a result of flying in a gusty environment is investigated. The structural dynamics of the wing is simulated using a rigid airfoil mounted on two linear/nonlinear springs to represent the bending and torsional stiffness of the wing. The wing is subjected to a combination of gust and aerodynamic loads. The unsteady aerodynamic lift and moment are modelled using Wagner's theory. Furthermore, the gust loads are obtained by assuming two different gust profiles, e.g. sharp-edged and 1-cosine gust profiles. A nonlinear energy sink, which comprises of a concentrated mass, damper and a nonlinear spring, is attached to the wing, and its effectiveness to absorb the gust energy is investigated. The coupled nonlinear aeroelastic equations are integrated numerically to determine the response of the wing. To verify the developed aeroelastic model, the obtained results are compared with the available results in the literature and an excellent agreement is observed. The results highlight that adding the NES to the wing is capable of reducing the gust oscillation amplitude of the wing significantly when the NES parameters are chosen accordingly

    Single stranded fully Modified-Phosphorothioate oligonucleotides can induce structured nuclear inclusions, alter nuclear protein localization and disturb the transcriptome In Vitro

    Get PDF
    Oligonucleotides and nucleic acid analogues that alter gene expression are now showing therapeutic promise in human disease. Whilst the modification of synthetic nucleic acids to protect against nuclease degradation and to influence drug function is common practice, such modifications may also confer unexpected physicochemical and biological properties. Gapmer mixed-modified and DNA oligonucleotides on a phosphorothioate backbone can bind non-specifically to intracellular proteins to form a variety of toxic inclusions, driven by the phosphorothioate linkages, but also influenced by the oligonucleotide sequence. Recently, the non-antisense or other off-target effects of 2â€Č O- fully modified phosphorothioate linkage oligonucleotides are becoming better understood. Here, we report chemistry-specific effects of oligonucleotides composed of modified or unmodified bases, with phosphorothioate linkages, on subnuclear organelles and show altered distribution of nuclear proteins, the appearance of highly stable and strikingly structured nuclear inclusions, and disturbed RNA processing in primary human fibroblasts and other cultured cells. Phosphodiester, phosphorodiamidate morpholino oligomers, and annealed complimentary phosphorothioate oligomer duplexes elicited no such consequences. Disruption of subnuclear structures and proteins elicit severe phenotypic disturbances, revealed by transcriptomic analysis of transfected fibroblasts exhibiting such disruption. Our data add to the growing body of evidence of off-target effects of some phosphorothioate nucleic acid drugs in primary cells and suggest alternative approaches to mitigate these effects

    Clinical features of childhood primary ciliary dyskinesia by genotype and ultrastructural phenotype

    Get PDF
    Rationale: The relationship between clinical phenotype of childhood primary ciliary dyskinesia (PCD) and ultrastructural defects and genotype is poorly defined. Objectives: To delineate clinical features of childhood PCD and their associations with ultrastructural defects and genotype. Methods: A total of 118 participants younger than 19 years old with PCD were evaluated prospectively at six centers in North America using standardized procedures for diagnostic testing, spirometry, chest computed tomography, respiratory cultures, and clinical phenotyping. Measurements and Main Results: Clinical features included neonatal respiratory distress (82%), chronic cough (99%), and chronic nasal congestion (97%). There were no differences in clinical features or respiratory pathogens in subjects with outer dynein arm (ODA) defects (ODA alone; n = 54) and ODA plus inner dynein arm (IDA) defects (ODA 1 IDA; n = 18) versus subjects with IDA and central apparatus defects with microtubular disorganization (IDA/ CA/MTD; n = 40). Median FEV 1 was worse in the IDA/CA/MTD group (72% predicted) versus the combined ODA groups (92% predicted; P = 0.003). Median body mass index was lower in the IDA/ CA/MTD group (46th percentile) versus the ODA groups (70th percentile; P = 0.003). For all 118 subjects, median number of lobes with bronchiectasis was three and alveolar consolidation was two. However, the 5- to 11-year-old IDA/CA/MTD group had more lobes of bronchiectasis (median, 5; P = 0.0008) and consolidation (median, 3; P = 0.0001) compared with the ODA groups (median, 3 and 2, respectively). Similar findings were observed when limited to participants with biallelic mutations. Conclusions: Lung disease was heterogeneous across all ultrastructural and genotype groups, but worse in those with IDA/ CA/MTD ultrastructural defects, most of whom had biallelic mutations in CCDC39 or CCDC40

    Ultrasonic exfoliation of hydrophobic and hydrophilic metal-organic frameworks to form nanosheets

    Get PDF
    The modular structure of metal-organic nanosheets (MONs) provides a convenient route to creating two-dimensional materials with readily tunable surface properties. Here we report the liquid exfoliation of two closely related layered metal-organic frameworks functionalised with either methoxy-propyl (1) or pentyl (2) pendent groups intended to bestow either hydrophilic or hydrophobic character to the resulting nanosheets. Exfoliation of the two materials in a range of different solvents highlighted significant differences in their dispersion properties and molecular and nanoscopic structure. Exchange or loss of solvent was found to occur at the labile axial position of the paddle-wheel based MONs and DFT calculations indicated that intramolecular coordination by the oxygen of the methoxy-propyl pendant groups may take place. The nanoscopic dimensions of the MONs were further tuned by varying the exfoliation conditions and through "cascade centrifugation". Aqueous suspensions of the nanosheets were used as sensors to detect aromatic heterocycles and with clear differences in binding behaviour observed and quantified

    The Correlated Colors of Transneptunian Binaries

    Full text link
    We report resolved photometry of the primary and secondary components of 23 transneptunian binaries obtained with the Hubble Space Telescope. V-I colors of the components range from 0.7 to 1.5 with a median uncertainty of 0.06 magnitudes. The colors of the primaries and secondaries are correlated with a Spearman rank correlation probability of 99.99991%, 5 sigma for a normal distribution. Fits to the primary vs. secondary colors are identical to within measurement uncertainties. The color range of binaries as a group is indistinguishable from that of the larger population of apparently single transneptunian objects. Whatever mechanism produced the colors of apparently single TNOs acted equally on binary systems. The most likely explanation is that the colors of transneptunian objects and binaries alike are primordial and indicative of their origin in a locally homogeneous, globally heterogeneous protoplanetary disk.Comment: 28 pages, 4 figure, 4 tables. accepted to Icaru
    • 

    corecore