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Beyond Consistency and Substitutability⋆

Martin C. Cooper

IRIT, University of Toulouse III, 31062 Toulouse, France
cooper@irit.fr

Abstract. Elimination of inconsistent values in instances of the constraint
satisfaction problem (CSP) conserves all solutions. Elimination of substi-
tutable values conserves at least one solution.We show that certain values
which are neither inconsistent nor substitutable can also be deleted while
conserving at least one solution. This allows us to state novel rules for
the elimination of values in a binary CSP. From a practical point of view,
we show that one such rule can be applied in the same asymptotic time
complexity as neighbourhood substitution but is strictly stronger.
An alternative to the elimination of values from domains is the elimi-

nation of variables. We give novel satisfiability-preserving variable elimi-
nation operations. In each case we show that if the instance is satisfiable,
then a solution to the original instance can always be recovered in low-
order polynomial time from a solution to the reduced instance.

1 Introduction

Operations to reduce the worst-case exponential time complexity of exhaustive
search are essential for the efficient resolution of large-scale constraint satisfac-
tion problems. Reduction operations aremost effective at reducing search space
size when applied during search, but if this is too computationally expensive
they can still be usefully applied just once during a preprocessing phase. Most
previous research in this domain has concentrated on domain-filtering oper-
ations based on various forms of consistency: a value is removed from a do-
main if an algorithm running in low-order polynomial time demonstrates that
this assignment cannot be part of a solution. Other reduction operations in-
clude the elimination of values by interchangeability or substitutability [7,11],
the merging of domain values [10], the elimination of variables [9,5,3] and the
introduction of symmetry-breaking constraints [1,8].
This paper studies local (and hence polytime-detectable) properties of bi-

nary CSP instances which allow value elimination or variable elimination while
preserving satisfiability. We show that allowing arbitrary quantification over
variables and values as well as arbitrary conditions on the compatibilities of
pairs of assignments provides a rich and largely unexplored source of reduction
operations.

⋆ Supported by ANR Project ANR-10-BLAN-0210 and EPSRC grant EP/L021226/1.



Definition 1. A binary CSP instance I consists of

– a set X of n variables,
– a domain D(x) of possible values for each variable x ∈ X ,
– a relation Rxy ⊆ D(x) ×D(y), for each pair of distinct variables x, y ∈ X , which

consists of the set of pairs of values (a, b) which can simultaneously be assigned to
variables (x, y).

A partial solution to I on Y ⊆ X is a mapping s : Y → D where, for all x 6= y ∈ Y
we have (s(x), s(y)) ∈ Rxy. A solution to I is a partial solution on X .

For simplicity of presentation, Definition 1 assumes that there is exactly one
constraint relation for each pair of variables {x, y}. If Rxy 6= D(x) × D(y), then
we say that variable x constrains variable y. If (a, b) ∈ Rxy , then the assignments
〈x, a〉 and 〈y, b〉 are compatible, otherwise incompatible.
In previous work we showed that there are exactly four variable-elimination

rules based on so-called irreducible existential patterns [3]. In the present paper
we give strict generalisations of all these rules. We also give value-elimination
rules which are strict generalisations of neighbourhood substitution [7]. The
paper is organised as follows: Section 2 and Section 3 present rules for, respec-
tively, value elimination and variable elimination, Section 4 gives a particular
value-elimination rule which generalises neighbourhood substitution but can
be applied in the same time complexity, Section 5 gives the complexity of re-
covering all solutions after applying our value or variable elimination rules,
while Section 6 discusses the difficulty of characterising all value or variable
elimination rules based on local properties.

2 Value Elimination

For each rule which tells us when a value can be eliminated from a domain,
there is a corresponding property which holds if and only if no value elimi-
nations can be performed by this rule. Following the tradition of consistency
properties, we state our rules in the form of positive properties which are satis-
fied if and only if no eliminations are possible.
We begin by recalling the notions of arc consistency and neighbourhood sub-

stitution, illustrated in Figure 1. In figures, each bullet represents a variable-
value assignment, assignments to the same variable are grouped together within
the same oval and compatible (incompatible) pairs of assignments are linked by
solid (broken) lines.

Definition 2. A value b ∈ D(x) is AC-supported if ∀y ∈ X \ {x}, ∃c ∈ D(y) such
that (b, c) ∈ Rxy. We say that c is an AC support for 〈x, b〉 at y.

Any assignment value b ∈ D(x) which is not AC-supported can be elimi-
nated fromD(x)without losing any solutions since the assignment 〈x, b〉 cannot
be part of any solution.
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Fig. 1. Illustration of the notions of (a) arc consistency, (b) neighbourhood substitution

In a binary CSP instance we can eliminate a value b ∈ D(x) by neighbour-
hood substitution if ∃a ∈ D(x) \ {b} such that ∀y ∈ X \ {x}, ∄c ∈ D(y) such
that (a, c) /∈ Rxy and (b, c) ∈ Rxy [7]. This is because in any solution the as-
signment 〈x, b〉 can be replaced by the assignment 〈x, a〉. The corresponding
positive property can be defined as follows.

Definition 3. A value b ∈ D(x) is neighbour-supported if ∀a ∈ D(x) \ {b}, ∃y ∈
X \ {x}, ∃c ∈ D(y) such that (a, c) /∈ Rxy and (b, c) ∈ Rxy. We say that 〈y, c〉 is a
neighbour-support of (x, b, a)

Clearly, an elimination by arc consistency is possible if and only if some
variable-value assignment has no AC-support and a neighbourhood substitu-
tion elimination is possible if and only if some variable-value assignment is
not neighbour-supported. We require the following definition in order to give
more general rules for value elimination than arc consistency and neighbour-
hood substitution.

Definition 4. A value-elimination condition (or simply a val-elim condition) is
a polytime-computable property P (x, b) of an assignment 〈x, b〉 in a CSP instance I
such that when P (x, b) holds, the instance I ′ obtained from I by eliminating b from
D(x) is satisfiable if and only if I is satisfiable.

A val-elim condition allows us to eliminate values from domains while con-
serving at least one solution (if one exists). In binary CSP, two val-elim condi-
tions on assignment 〈x, b〉 are: (1) b ∈ D(x) is not AC-supported, (2) b ∈ D(x)
is not neighbour-supported. We now introduce two other notions of support
which if not satisfied allow us to eliminate a value from a domain. The first of
these is illustrated in Figure 2.
Given a binary CSP instance I , let I[〈y, c〉] denote the instance which results

by assigning c to y and by eliminating all values e from other domains D(w)
(w ∈ X \ {y}) such that (c, e) /∈ Ryw. Suppose that for all possible assignments
c to y in I , b is neighbourhood substitutable by some value (not necessarily the
same for each value c) in I[〈y, c〉]. Then b can be deleted from D(x) in I without
changing the satisfiability of I . This idea is captured by the following positive
property of conditional neighbour (CN) support.

Definition 5. A value b ∈ D(x) is CN-supported if ∀y ∈ X \ {x}, ∃c ∈ D(y) such
that: (1) (b, c) ∈ Rxy and (2) ∀a ∈ D(x) \ {b} with (a, c) ∈ Rxy, ∃z ∈ X \ {x, y},
∃d ∈ D(z) such that (c, d) ∈ Ryz , (b, d) ∈ Rxz and (a, d) /∈ Rxz .
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Fig. 2. Illustration of the definition that b is CN-supported

In other words, b ∈ D(x) is CN-supported if ∀y ∈ X \ {x}, 〈x, b〉 has an AC
support c at y such that ∀a ∈ D(x) \ {b} with (a, c) ∈ Rxy , ∃z ∈ X \ {x, y},
∃d ∈ D(z) such that (c, d) ∈ Ryz and 〈z, d〉 is a neighbour-support of (x, b, a).
It follows immediately from this definition that a CN-supported assignment is
also AC-supported, and (almost immediately) that it is neighbour-supported.
When 〈y, c〉 is a neighbour-support of (x, b, a), as illustrated in Figure 1(b), it

may still be possible to replace b by a in all solutions providedwe also replace c
by another value d. Aswewill see in the proof of Proposition 1, below, this is the
motivation behind the following notion of extended-neighbour (EN) support,
illustrated in Figure 3.

Definition 6. A value b ∈ D(x) is EN-supported if ∀a ∈ D(x)\{b}, ∃y ∈ X \{x},
∃c ∈ D(y) such that: (1) (a, c) /∈ Rxy , (b, c) ∈ Rxy and (2) ∀d ∈ D(y) with (a, d) ∈
Rxy, ∃z ∈ X \{x, y}, ∃e, f ∈ D(z) such that (a, e) ∈ Rxz , (d, e) /∈ Ryz , (c, f) ∈ Ryz

and (d, f) /∈ Ryz .

In other words, b ∈ D(x) is EN-supported if ∀a ∈ D(x) \ {b}, there is a
neighbour-support 〈y, c〉 of (x, b, a) such that condition (2) of Definition 6 holds.
It follows that a EN-supported assignment is also neighbour-supported.

Example 1. Suppose that in a binary CSP instance I , there is a subset S of the
variables such that each domain D(x) (x ∈ S) contains a default value 0, where
assigning 0 to a variable in S is only possible if we assign 0 to all variables in
S, and this partial solution (s(x) = 0 for x ∈ S) is compatible with all possible
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Fig. 3. Illustration of the definition that b is EN-supported



assignments to all variables in X \ S, i.e. ∀x, y ∈ S, (0, c) ∈ Rxy ⇔ c = 0, and
∀x ∈ S, ∀y /∈ S, (0, c) ∈ Rxy for all c ∈ D(y). Let b be any value in D(x) \ {0},
for some x ∈ S. We will show that b is not EN-supported. Setting a = 0, if
y ∈ X \ {x} and c ∈ D(y) are such that (a, c) /∈ Rxy and (b, c) ∈ Rxy , then we
necessarily have y ∈ S. So ∃d = 0 ∈ D(y) with (a, d) = (0, 0) ∈ Rxy , such that

– ∀z ∈ S \ {x, y}, ∀e ∈ D(z) with (a, e) ∈ Rxz , we have e = 0 and hence
(d, e) = (0, 0) ∈ Ryz , and

– ∀z ∈ X \ S, ∀f ∈ D(z), we have (d, f) = (0, f) ∈ Ryz

It follows from Definition 6 that no b ∈ D(x) \ {0} is EN-supported, and hence,
anticipating Proposition 1, we can reduce the domains of all variables x ∈ S to
a singleton {0} by eliminating all such values b.

We now show that the notions of support given in Definitions 5 and 6
allow us to define val-elim conditions: Proposition 1, below, tells us that assign-
ments with no CN-support or no EN-support can be eliminated while conserv-
ing satisfiability. If b ∈ D(x) is not neighbour-supported, then it is
neither CN-supported nor EN-supported. Thus eliminating values that are not
CN-supported or not EN-supported implies eliminating a superset of those val-
ues that can be eliminated by neighbourhood substitution.

Proposition 1. Both of the following conditions on assignment 〈x, b〉 are val-elim con-
ditions in binary CSP instances:

1. b ∈ D(x) is not CN-supported.
2. b ∈ D(x) is not EN-supported.

Proof. Let I be a binary CSP instance and suppose that s is a solution to I such
that s(x) = b. In both cases, we will show that I has a solution s′ in which
s′(x) 6= b.

1. Since b ∈ D(x) is not CN-supported, ∃y ∈ X \ {x} such that ∀c ∈ D(y)
with (b, c) ∈ Rxy, ∃a(y, c) ∈ D(x) \ {b} with (a(y, c), c) ∈ Rxy such that
∀z ∈ X \ {x, y}, ∀d ∈ D(z) with (c, d) ∈ Ryz and (b, d) ∈ Rxz , we have
(a(y, c), d) ∈ Rxz . Define s′ to be identical to s, except that s′(x) = a(y, s(y)).
Now the assignment 〈x, a(y, s(y))〉 is compatible with 〈y, s(y)〉 (by defini-
tion of a(y, s(y))). Furthermore (again by definition of a(y, s(y))) the assign-
ment 〈x, a(y, s(y))〉 is compatible with all assignments which are compati-
ble with both of 〈x, b〉 and 〈y, s(y)〉 and hence with all assignments 〈z, s(z)〉
(z ∈ X \ {x, y}). It follows that s′ is a solution.

It is worth pointing out that this proof is valid even in the special case in
which X = {x, y}.

2. Since b ∈ D(x) is not EN-supported, ∃a ∈ D(x) \ {b} such that ∀y ∈ X \
{x}, ∀c ∈ D(y) with (a, c) /∈ Rxy and (b, c) ∈ Rxy, ∃d(y, c) ∈ D(y) with
(a, d(y, c)) ∈ Rxy , such that ∀z ∈ X \ {x, y}, either
(a) ∀e ∈ D(z) with (a, e) ∈ Rxz , we have (d(y, c), e) ∈ Ryz , or
(b) ∀f ∈ D(z) with (c, f) ∈ Ryz , we have (d(y, c), f) ∈ Ryz
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Fig. 4. b ∈ D(x) is not EN-supported

This is illustrated in Figure 4. Recall that s is a solution such that s(x) = b.
Let Y := {y ∈ X | (a, s(y)) ∈ Rxy} and Y := X \ (Y ∪ {x}). Define s′ as
follows

s′(v) =











a if v = x,
s(v) if v ∈ Y ,
d(v, s(v)) otherwise.

The assignments 〈v, s(y)〉 (v ∈ Y ) are all compatible with 〈x, a〉 (by defi-
nition of Y ) and with each other (since they are all part of the solution s).
The assignments 〈v, d(v, s(v))〉 (v ∈ Y ) are all compatible with 〈x, a〉 (by
definition of d(v, s(v))). Furthermore (again by the definition of d(v, s(v)),
whether it is (a) or (b) that holds) the assignments 〈v, d(v, s(v))〉 (v ∈ Y ) are
all compatible with all assignments which are compatible both with 〈x, a〉
and 〈v, s(v)〉 and hence with all assignments 〈w, s(w)〉 for all w ∈ Y (which
are compatible with 〈x, a〉 by definition of Y and with 〈v, s(v)〉 since s is
a solution). To complete the proof that s′ is a solution, it suffices to prove
that ∀v 6= w ∈ Y , (d(v, s(v)), d(w, s(w))) ∈ Rvw. Suppose, for a contradic-
tion, that (d(v, s(v)), d(w, s(w))) /∈ Rvw. Then, when y = v, c = s(v) and
z = w, we necessarily fall into case (b), since setting e = d(w, s(w)) con-
tradicts case (a). But then setting f = d(w, s(w)) in case (b) implies that
(s(v), d(w, s(w))) /∈ Rvw. By a symmetrical argument, exchanging v and w,
we immediately have that (d(v, s(v)), s(w)) /∈ Rvw. But applying case (b) to
y = v, c = s(v), z = w and f = s(w) implies that (d(v, s(v)), s(w)) ∈ Rvw.
From this contradiction we can deduce that s′ is a solution.

It is worth pointing out that this proof is valid even in the special case in
which I has only two variables x, y. In this case, either b can be eliminated
by neighbourhood substitution, or there is some solution (a, d(y, c)) to I
which does not require the assignment 〈x, b〉.

The following two examples show that the two rules given in Proposition 1
allows us to eliminate certain values which are neither arc-inconsistent nor
neighbourhood substitutable.

Example 2. Consider the arc-consistent CSP instance I4 with X = {w, x, y, z},
D(w) = D(x) = D(y) = D(z) = {1, 2, 3} and five constraints x 6= y, y = z, x 6= z,



w 6= y, w = z. No eliminations are possible by neighbourhood substitution,
but any b ∈ D(x) can be eliminated since it is not CN-supported: ∀c ∈ D(y),
b ∈ D(x) is neighbourhood substitutable in I4[〈y, c〉].

Example 3. Consider the arc-consistent CSP instance withX = {x, y, z},D(x) =
D(y) = D(z) = {1, 2, 3} and three constraints x 6= y, x 6= z, (y, z) /∈ {(1, 3), (3, 1)}.
No eliminations are possible by neighbourhood substitution, but the assign-
ment b = 2 ∈ D(x) can be eliminated since it is not EN-supported: this follows
from the symmetry between variables y,z and the fact that the value a = 1 ∈
D(x) is such that ∀c ∈ D(y) with (a, c) /∈ Rxy and (b, c) ∈ Rxy (i.e. c = 1),
∃d = 2 ∈ D(y) with (a, d) ∈ Rxy, such that ∀e ∈ D(z), (d, e) ∈ Ryz .

Our two value-elimination rules are complementary since in Example 2, all
variable-value assignments are EN-supported and in Example 3, all variable-
value assignments are CN-supported.

3 Variable Elimination

In this sectionwe present conditions underwhich a variable x can be eliminated
from a binary CSP instance while preserving satisfiability. A simple example of
such a condition is that ∃a ∈ D(x) which is compatible with all assignments to
all other variables. Another simple example is that the variable x has a single-
ton domain {a}. This second example demonstrates that when eliminating the
variable x we need to retain the projections onto X \ x of all constraints whose
scope includes x, since in this example we must first eliminate from all domains
D(y) (y 6= x) those values that are not compatible with 〈x, a〉. Thus, the instance
I ′ obtained by eliminating a variable x from a binary CSP instance I is identical
to I except that (1) ∀y 6= x, we have deleted from D(y) all values b such that
〈y, b〉 has no AC-support at x in I , and (2) we have deleted the variable x and
all constraints with x in their scope.
As another example, consider the case when an assignment 〈x, a〉 is such that

all other values in the domain of x can be removed one by one, by elimination
thanks to one of the val-elim conditions given in Section 2. The variable x can
again be eliminated while preserving satisfiability. We can relate this to previ-
ous variable-elimination rules as follows. By the above discussion, it is possible
to eliminate a variable x when all values b ∈ D(x), except for an assignment
〈x, a〉, are not EN-supported at 〈x, a〉 (in the sense that there is no neighbour-
support 〈y, c〉 of (x, b, a) which satisfies Condition (2) of Definition 6). This rule
strictly subsumes two previously published variable-elimination rules (corre-
sponding to the absence of the existential patterns ∃snake or ∃invsubBTP in
arc-consistent binary CSP instances) [3].
We require the following formal definition in order to give further variable-

elimination rules.

Definition 7. A satisfiability-preserving variable-elimination condition (or a
var-elim condition) is a polytime-computable property P (x) of a variable x in a bi-
nary CSP instance I such that when P (x) holds the instance I ′ obtained from I by



eliminating x from I is satisfiable if and only if I is satisfiable. Such a property P (x) is
a solution-preserving variable-elimination condition (sol-var-elim condition) if
it is possible to construct a solution to I from any solution s′ to I ′ in polynomial time.

A sol-var-elim condition not only allows us to eliminate variables while
preserving satisfiability but also allows the polynomial-time recovery of at least
one solution to the original instance I from a solution to the reduced instance I ′.
All the var-elim properties given in this paper are also sol-var-elim properties.
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Fig. 5. Illustration of the definition that (a) a variable x is Triangle-supported, (b) a vari-
able x is ∃∀BTP-supported

The following notion of support is illustrated in Figure 5(a). It says that it is
not the case that ∃y 6= x such that for all a ∈ D(y) to y, in I[〈y, a〉] (the reduced
instance consisting of the set of assignments compatible with 〈y, a〉) there is an
assignment 〈x, b〉 compatible with all assignments to all variables z ∈ X \{x, y}.

Definition 8. A variable x is Triangle-supported if ∀y ∈ X \ {x}, ∃a ∈ D(y) such
that ∀b ∈ D(x) with (b, a) ∈ Rxy , ∃z ∈ X \ {x, y}, ∃c ∈ D(z) such that (a, c) ∈ Ryz

and (b, c) /∈ Rxz .

It is known that if for a given variable x in an arc-consistent binary CSP in-
stance I , the set of (in)compatibilities (known as a broken triangle) shown in
Figure 5(b) occurs for no two values b, d ∈ D(x) and no two assignments a, c
to two other variables y, z, then the variable x can be eliminated from I with-
out changing the satisfiability of I [5,3]. The following notion of support, based
on the same broken triangle shown in Figure 5(b), leads to a strict generalisa-
tion of the broken-triangle property (BTP) variable-elimination rule [5]. We can
observe that, unlike BTP, this new rule does not require arc consistency. The
corresponding positive property is given by the following definition.

Definition 9. A variable x is ∃∀BTP-supported if ∃y ∈ X \ {x}, ∃a ∈ D(y) such
that ∀b ∈ D(x) with (b, a) ∈ Rxy , ∃z ∈ X \ {x, y}, ∃c ∈ D(z) with (a, c) ∈ Ryz and
(b, c) /∈ Rxz , such that ∃d ∈ D(x) with (d, c) ∈ Rxz and (d, a) /∈ Rxy.

The following notion of support is illustrated in Figure 6.
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Fig. 6. Illustration of cases (a) and (b) of Definition 10 that variable x is crab-supported

Definition 10. A variable x is crab-supported if ∀a ∈ D(x), ∃y ∈ X \ {x}, ∃b ∈
D(y) with (a, b) /∈ Rxy such that (1) ∀c ∈ D(x) with (c, b) ∈ Rxy, ∃z ∈ X \ {x, y},
∃d ∈ D(z) with (b, d) ∈ Ryz and (c, d) /∈ Rxz , and (2) ∀e ∈ D(y) with (a, e) ∈ Rxy ,
∃w ∈ X \ {x, y}, ∃f ∈ D(w) with (b, f) ∈ Ryw and (e, f) /∈ Ryw.

Proposition 2. Each of the following properties of variable x are sol-var-elim condi-
tions in binary CSP instances:

1. x is not Triangle-supported.
2. x is not ∃∀BTP-supported and D(x) 6= ∅.
3. x is not crab-supported.

Proof. Let I be a binary CSP instance and suppose that s′ is a solution to I ′, the
instance obtained by eliminating variable x from I . In each of the three cases,
we will show that I has a solution s. In each case our proof is constructive and
there is an obvious polynomial-time algorithm to produce s from s′.

1. Since x is not Triangle-supported, ∃y ∈ X \ {x} such that ∀a ∈ D(y),
∃b(a) ∈ D(x) with (b(a), a) ∈ Rxy such that ∀z ∈ X \ {x, y}, ∀c ∈ D(z)
with (a, c) ∈ Ryz , we have (b(a), c) ∈ Rxz . Define s as follows: s(v) = s′(v)
(v ∈ X \ {x}) and s(x) = b(s′(y)). The assignment 〈x, b(s′(y))〉 is compat-
ible with 〈y, s′(y)〉 (by definition of b(s′(y))) and is compatible with all of
the assignments 〈v, s′(v)〉 (v ∈ X \ {x}) again by definition of b(s′(y)) since
(s′(y), s′(v)) ∈ Ryv . Hence s is a solution to I .
It is easily verified that this proof is valid even in the special caseX = {x, y}.

2. If X = {x}, then since D(x) 6= ∅, I has a solution. So from now on we
assume that |X | ≥ 2. Since x is not ∃∀BTP-supported, ∀y ∈ X \ {x}, ∀a ∈
D(y), ∃b(y, a) ∈ D(x) with (b(y, a), a) ∈ Rxy such that ∀z ∈ X \ {x, y}, ∀c ∈
D(z) with (a, c) ∈ Ryz and (b(y, a), c) /∈ Rxz , ∀d ∈ D(x) with (d, c) ∈ Rxz ,
we have (d, a) ∈ Rxy .
For v ∈ X\{x}, let Im(v) := {d ∈ D(x) | (d, s′(v)) ∈ Rxv}. If y, z ∈ X\{x}

are such that (b(y, s′(y)), s′(z)) /∈ Rxz , then setting a = s′(y), c = s′(z), we
can deduce that (d, s′(z)) ∈ Rxz ⇒ (d, s′(y)) ∈ Rxy and hence that Im(z) ⊆
Im(y). Indeed,we have Im(z) ⊂ Im(y) since b(y, s′(y)) ∈ Im(y)\ Im(z). Now
choose some y ∈ X\{x} such that Im(y) is minimal for inclusion among the



sets Im(v) (v ∈ X \ {x}). Then the assignment 〈x, b(y, s′(y))〉 is compatible
with all the assignments s′(z) (z ∈ X \ {x, y}) (otherwise we would have
Im(z) ⊂ Im(y)which would contradict the minimality of Im(y)). Therefore,
s is a solution to I , where s(v) = s′(v) (v ∈ X \ {x}) and s(x) = b(y, s′(y)).

3. Since x is not crab-supported, ∃a ∈ D(x) such that ∀y ∈ X \ {x}, ∀b ∈ D(y)
with (a, b) /∈ Rxy , at least one of the following two conditions holds:
(a) ∃c(y, b) ∈ D(x) with (c(y, b), b) ∈ Rxy such that ∀z ∈ X \ {x, y}, ∀d ∈

D(z) with (b, d) ∈ Ryz , we have (c(y, b), d) ∈ Rxz .
(b) ∃e(y, b) ∈ D(y) with (a, e(y, b)) ∈ Rxy such that ∀w ∈ X \ {x, y}, ∀f ∈

D(w) with (b, f) ∈ Ryw, we have (e(y, b), f) ∈ Ryw.
IfX = {x}, then since a ∈ D(x), I has a solution. IfX = {x, y} (with y 6= x),
then I has a solution, either of the form (c(y, b), b) or of the form (a, e(y, b)).
So, from now on we assume that |X | ≥ 3.

Let b ∈ D(y) be such that (a, b) /∈ Rxy. Let I1 be identical to I except
that we have made 〈x, a〉 compatible with the assignment 〈y, b〉. We will
show that I1 is satisfiable iff I is satisfiable. Furthermore, it follows directly
from Definition 10 that I1 is also not crab-supported. It will then follow,
by a simple inductive argument, that we can make 〈x, a〉 compatible with
all assignments to all other variables in I without changing its satisfiability.
But then we can eliminate x from I since there is an assignment to x which
is compatible with all assignments to all other variables.

Suppose first that 〈y, b〉 satisfies condition (a), i.e. ∃c(y, b) ∈ D(x) with
(c(y, b), b) ∈ Rxy such that ∀z ∈ X \ {x, y}, ∀d ∈ D(z) with (b, d) ∈ Ryz ,
we have (c(y, b), d) ∈ Rxz . Let I1 be identical to I except that (a, b) ∈ Rxy

in I1. Suppose that I1 has a solution s1 such that s1(x) = a and s1(y) = b.
To show that I and I1 have the same satisfiability, it suffices to show that
I also has a solution. Consider any z ∈ X \ {x, y} and let d = s1(z). Since
s1 is a solution to I1, (b, d) ∈ Ryz . Thus, by condition (a), (c(y, b), d) ∈ Rxz .
Furthermore, (c(y, b), b) ∈ Rxy . Define s by s(v) = s1(v) (v ∈ X \ {x})
and s(x) = c(y, b). Then s is a solution to I , since we have just shown that
〈x, c(y, b)〉 is compatible with 〈v, s1(v)〉 for all v ∈ X \ {x}.

Suppose now that 〈y, b〉 satisfies condition (b), i.e. ∃e(y, b) ∈ D(y) with
(a, e(y, b)) ∈ Rxy such that ∀w ∈ X\{x, y}, ∀f ∈ D(w)with (b, f) ∈ Ryw, we
have (e(y, b), f) ∈ Ryw. Again, let I1 be identical to I except that (a, b) ∈ Rxy

in I1. Suppose that I1 has a solution s1 such that s1(x) = a and s1(y) = b.
To show that I and I1 have the same satisfiability, it suffices to show that I
also has a solution. Consider any w ∈ X \ {x, y} and let f = s1(w). Since
s1 is a solution to I1, (b, f) ∈ Ryw. Thus by condition (b), (e(y, b), f) ∈ Ryw.
Furthermore, (a, e(y, b)) ∈ Rxy. Define s by s(v) = s1(v) (v ∈ X \ {y})
and s(y) = e(y, b). Then s is a solution to I , since we have just shown that
〈y, e(y, b)〉 is compatible with 〈v, s1(v)〉 for all v ∈ X \ {y}.

The var-elim rule given by Proposition 2(2) subsumes the BTP var-elim rule [5].
Examples of the BTP var-elim rule include a variable x which is only con-
strained by one other variable in an arc-consistent instance or a Boolean vari-
able x in a path-consistent instance. However, eliminating a variable with no



∃∀BTP support is strictly stronger then the BTP var-elim rule. This is demon-
strated by the fact that it also subsumes the rule that allows us to eliminate a
variable x when an assignment to x is compatible with all assignments to all
other variables. Another generic example is when all occurrences of the BTP
pattern shown in Figure 5(b) on variable x occur on pairs of values b, d ∈ S ⊂
D(x) and each assignment a to each other variable y 6= x has an AC-support at
x in D(x) \ S.
The var-elim rule given by Proposition 2(3) is a strict generalisation of two

previously published var-elim rules (corresponding to the absence of the exis-
tential patterns ∃subBTP or ∃snake in arc-consistent binary CSP instances) [3].

4 Practical Considerations

In binary CSP instances with a large number of variables and/or with large
domains, applying the value and variable elimination rules given in this paper
may not be practical. Thus, to demonstrate the practical utility of our approach,
we now give a weaker version of the notion of EN-support which is neverthe-
less strictly stronger than the notion of neighbour-support. It leads to a val-elim
rule that is strictly stronger than neighbourhood substitution but that can be ap-
plied in the same worst-case time complexity [6].

Definition 11. A value b ∈ D(x) is snake-supported if ∀a ∈ D(x) \ {b}, ∃y ∈
X \ {x}, ∃c ∈ D(y) such that: (1) (a, c) /∈ Rxy, (b, c) ∈ Rxy and (2) ∀d ∈ D(y) with
(a, d) ∈ Rxy, ∃z ∈ X \ {x, y}, ∃f ∈ D(z) such that (c, f) ∈ Ryz and (d, f) /∈ Ryz .

In other words, b ∈ D(x) is snake-supported if ∀a ∈ D(x) \ {b}, there is
a neighbour-support 〈y, c〉 of (x, b, a) such that ∀d ∈ D(y) with (a, d) ∈ Rxy ,
(y, c, d) has a neighbour-support 〈z, f〉 for some z ∈ X\{x, y}. This is illustrated
by the right-hand side of Figure 3. An assignment which is not snake-supported
is not EN-supported and hence, by Proposition 1, can be eliminated.
In order to establish and maintain the property that all assignments are

snake-supported, we use the following data structures: AC-supps(x,s,y) (for all
x, y ∈ X such that y constrains x and for all s ∈ D(x)), neighbour-supps(y,p,q),
neighbour-supp-vars(y,p,q), diamond-supps(y,p,q), snake-supps(y,p,q) (for all
y ∈ X and for all p, q ∈ D(y)), neighbour-supps-at(y,p,q,z) (for all y, z ∈ X
such that y constrains z and for all p, q ∈ D(y)), and hinge-supps(y,p,x,s) (for
all x, y ∈ X such that y constrains x and for all p ∈ D(y), s ∈ D(x)), where

– AC-supps(x,s,y) = {q ∈ D(y) | (s, q) ∈ Rxy}
– neighbour-supps(y,p,q)= {〈z, r〉 | r ∈ D(z) ∧ (p, r) ∈ Ryz ∧ (q, r) /∈ Ryz}
– neighbour-supps-at(y,p,q,z)= {r ∈ D(z) | 〈z, r〉 ∈ neighbour-supps(y,p,q)}
– neighbour-supp-vars(y,p,q)= {z ∈ X | neighbour-supps-at(y,p,q,z) 6= ∅}
– diamond-supps(y,p,q) = {〈x, s〉 ∈ neighbour-supps(y,q,p) |

∃〈z, r〉 ∈ neighbour-supps(y,p,q) with z 6= x }
– hinge-supps(y,p,x,s) = {q ∈ D(y) \ {p} | 〈x, s〉 ∈ diamond-supps(y,p,q)}
– snake-supps(x,t,s) = {〈y, p〉 ∈ neighbour-supps(x,t,s) |

|hinge-supps(y,p,x,s)| = |AC-supps(x,s,y)| }.



These different notions of support are illustrated in Figure 7: in Figure 7(a),
〈z, r〉 ∈ neighbour-supps(y,p,q); in Figure 7(b), 〈x, s〉 ∈ diamond-supps(y,p,q)
and q ∈ hinge-supps(y,p,x,s); in Figure 7(c), 〈y, p〉 ∈ snake-supps(x,t,s) if ∀q ∈
D(y), q ∈ AC-supps(x,s,y)⇒ q ∈ hinge-supps(y,p,x,s).
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Fig. 7. Illustration of (a) neighbour, (b) diamond and hinge, and (c) snake supports

We can see from Figure 7 and Definition 11, that t ∈ D(x) is snake-supported
if and only if ∀s ∈ D(x) \ {t}, snake-supps(x,t,s) 6= ∅. A value t is therefore
deleted from D(x) when snake-supps(x,t,s) = ∅ for some s ∈ D(x) \ {t}.
Let e be the number of pairs of variables which constrain each other, and let d

be the maximum domain size. We can store subsets of a finite set S (such as the
set of all variable-value assignments) in the form of a doubly linked list (whose
length is also stored) and an array indexed by elements of S and containing
pointers to this list. This allows the basic operations of addition, deletion and
test of membership and of size to be performed inO(1) time. The six data struc-
tures, given above, require O(ed3) space when stored in this way. We calculate
and maintain diamond-supps(y,p,q) using the fact that

diamond-supps(y,p,q) = neighbour-supps(y,q,p)
if |neighbour-supp-vars(y,p,q)| > 1,

diamond-supps(y,p,q)= {〈z, r〉 ∈ neighbour-supps(y,q,p) | z 6= x}
if neighbour-supp-vars(y,p,q)= {x}.

The above six data structures can be calculated inO(ed3) from their definitions.
Then values t ∈ D(x) which are not snake-supported can be eliminated, which
may provoke new eliminations. Maintaining the above data structures until
convergence (i.e. to the point at which all assignments are snake-supported)
can be achieved inO(ed3) time since assignments can only be deleted and never
added to the data structures.

5 Recovering All Solutions

In some applications, it is important to return all solutions to a CSP instance.
We therefore study in this section whether it is possible to efficiently recover all



solutions to a binary CSP instance after elimination of variables and/or values
by our rules.

Proposition 3. Let I be a binary CSP instance and let S be the set of all solutions to
the instance I ′ obtained after applying a sequence σ of operations given by the elimi-
nation of values that are not CN-supported or the elimination of variables that are not
Triangle-supported, or not ∃∀BTP-supported, or not crab-supported. Then the set of all
solutions to I can be found from (S, σ) in O(|SI |ed + 1) time, where SI is the set of
solutions to I .

Proof. In the trivial case in which |SI | = 0, we necessarily have as input S = ∅
which can clearly be tested for in O(1) time.
First consider the elimination of a single variable x from an instance I by

one of the three variable-elimination rules. As observed in the proof of Propo-
sition 2, each solution of the reduced instance can be extended to a solution of
I . This implies that the number of solutions cannot decrease when we reinstate
the variable x. Clearly each solution of I is an extension of a solution of the
reduced instance. So testing all possible extensions of each solution of the re-
duced instance will produce all solutions of I in time O(|SI |exd), where ex is
the number of binary constraints with x in their scope.
Now consider the elimination of a value b from the domain of a variable x

due to the fact that b is not CN-supported. As observed in the proof of Proposi-
tion 1, s is a solution to I with s(x) = b implies that there is a solution s′ to the
reduced instance I ′ such that s′(x) 6= b and s′(v) = s(v) for v 6= x. To determine
all solutions of I including the assignment 〈x, b〉 from the set of all solutions of
the reduced instance thus requires only O(|SI |ex) time.
Summing over all variables x and, in the case of value-eliminations, over all

assignments to x, we obtain a total time complexity ofO(|SI |ed+1), as claimed.

On the other hand, the following proposition indicates that eliminating val-
ues with no snake-support or no EN-support is not useful if we require all so-
lutions. Since a value which is not snake-supported is not EN-supported, we
only need to consider the former.

Proposition 4. Let I be a binary CSP instance and let I ′ be the instance obtained from
I after eliminating all values that are not snake-supported or not arc consistent. Even
if we are given the set of all solutions to I ′, determining whether I has more than one
solution is NP-complete.

Proof. This problem is clearly in NP. It therefore suffices to give a polynomial
reduction from the known NP-complete problem binary CSP. Let J be an arbi-
trary instance of binary CSP on variables X where, without loss of generality,
we assume ∀x ∈ X , 0 /∈ D(x) in J . We build an instance I on variablesX ∪{x0}
where x0 /∈ X and the domain of variable x0 in I is {0, 1}.We add an extra value
0 to each domain D(x) (x ∈ X). In I , for all variables y ∈ X , the assignment
〈x0, 0〉 is compatible only with the assignment 〈y, 0〉, whereas the assignment
〈x0, 1〉 is compatible with all the assignments 〈y, a〉 for a 6= 0; furthermore for
each y, z ∈ X , the assignment 〈y, 0〉 is compatible with all assignments to z.



In I , the value 1 ∈ D(x0) is not snake-supported, and hence can be elim-
inated from the domain of x0. After establishing arc consistency, all domains
are reduced to the singleton {0}. Hence the reduced instance has exactly one
solution. In the instance I , the assignment 〈x0, 0〉 only belongs to the solution
assigning 0 to each variable, whereas the assignment 〈x0, 1〉 is compatible with
exactly the set of solutions to the instance J . Thus, determining the existence of
a second solution to I is equivalent to determining the satisfiability of J .

6 Theoretical Discussion

We now look into the question of whether there are other rules for the elimina-
tion of values or variables (which are not subsumed by known rules or the rules
we have given in this paper). To avoid confusion, we use the specific terms CSP-
value and CSP-variable to refer to names of values and variables to be quan-
tified. We consider very general rules of the form Q(Avar ∪ Aval)f(E(A))[v],
where A is a set of variable-value assignments 〈x, a〉 in which each CSP-value
a occurs exactly once, Avar (Aval) is the set of CSP-variables (CSP-values) oc-
curring in A, Q(Avar ∪ Aval) is a sequence of quantifications on Avar ∪ Aval,
E(A) is the list of the compatibilities of all pairs of assignments from A to
two distinct CSP-variables (i.e. the list of truth values of (a, b) ∈ Rxy for each
(〈x, a〉, 〈y, b〉) ∈ A2 with x 6= y), f : {0, 1}m → {0, 1} is any Boolean function
(wherem = |E(A)|), and v is the CSP-variable or CSP-value which can be elim-
inated whenever Q(Avar ∪Aval)f(E(A)) holds.
For Q(Avar ∪ Aval)f(E(A))[v] to be well-formed we require that

1. Each CSP-value in Aval and each CSP-variable in Avar occurs exactly once
in Q(Avar ∪ Aval),

2. In Q(Avar ∪ Aval) each CSP-variable x ∈ Avar is quantified ∃x ∈ X \ Y or
∀x ∈ X \ Y where Y is the set of CSP-variables which has already been
quantified (i.e. those CSP-variables appearing to the left of x in Q(Avar ∪
Aval)),

3. InQ(Avar∪Aval) each CSP-value a is quantified ∀a ∈ D(x) or ∃a ∈ D(x)\Hx

where x is a CSP-variable which has already been quantified, andHx is the
set of CSP-values which have already been quantified over D(x),

4. v is a CSP-variable in Avar or a CSP-value in Aval,
5. f is not identically equal to FALSE.

We have chosen to impose that universal quantification of CSP-values be
over all values in a domain whereas existential quantification of CSP-values be
over all unused values, since all the rules given in this paper can be expressed
using this convention. Note that since the various kinds of support (such as
neighbour-support, CN-support, etc.) are the negation of the corresponding
elimination rule, in the definition of each kind of support, existential quantifi-
cation of CSP-values is over all values in a domain and universal quantification
of CSP-values is over all unused values.
Unfortunately, exhaustive search even concerning rules on a small number of

CSP-variables and CSP-values rapidly becomes impossible since the number of



Boolean functions onm arguments is 22
m

. Previously, we have studied different
forms of forbidden patterns [2,3,4]. Forbidding a flat pattern on assignments A
corresponds to a rule Q(Avar ∪ Aval)f(E(A)) where all quantifiers in Q are ∀
and the function f is a clause. Quantified (respectively, existential) patterns are
of the same form except that the sequence of quantifications Q begins ∃x ∈ X
(respectively, ∃x ∈ X , ∃a1 ∈ D(x), . . . , ∃ar ∈ D(x)) [3]. The rules we consider
in this paper are thus much more general in that we allow any (well-formed)
sequence of quantifications but also because we allow any Boolean function of
the compatibilities.
A valid rule is interesting if it is not too expensive to apply and there is no

other rule which both strictly subsumes it and is no more expensive to apply.
Not only is the number of cases to consider very large, but the number of inter-
esting var-elim or val-elim rules Q(Avar ∪ Aval)f(E(A))[v] could possibly turn
out to be very large. It should also be pointed out that certain reduction opera-
tions, such as singleton arc consistency, cannot be expressed as local properties.

7 Conclusion

This paper describes several novel reduction operations for binary CSP which
are neither based on consistency nor on substitutability. They reduce search
space size either by elimination of variables or by the elimination of values. We
showed that one of these operations can be applied in the same time complexity
as neighbourhood substitution but is strictly stronger. From a practical point of
view, further research is required to determine the utility of the rules given in
this paper, for example, as preprocessing operations on large-scale real-world
instances, or to identify tractable problem domains in which all variables can be
eliminated by our variable-elimination rules. From a theoretical point of view,
the most interesting challenge is the characterisation of all such rules.
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