900 research outputs found

    Reversible surface aggregation in pore formation by pardaxin

    Get PDF
    The mechanism of leakage induced by surface active peptides is not yet fully understood. To gain insight into the molecular events underlying this process, the leakage induced by the peptide pardaxin from phosphatidylcholine/ phosphatidylserine/cholesterol large unilamellar vesicles was studied by monitoring the rate and extent of dye release and by theoretical modeling. The leakage occurred by an all-or-none mechanism: vesicles either leaked or retained all of their contents. We further developed a mathematical model that includes the assumption that certain peptides become incorporated into the vesicle bilayer and aggregate to form a pore. The current experimental results can be explained by the model only if the surface aggregation of the peptide is reversible. Considering this reversibility, the model can explain the final extents of calcein leakage for lipid/peptide ratios of > 2000:1 to 25:1 by assuming that only a fraction of the bound peptide forms pores consisting of M = 6 +/- 3 peptides. Interestingly, less leakage occurred at 43 degrees C, than at 30 degrees C, although peptide partitioning into the bilayer was enhanced upon elevation of the temperature. We deduced that the increased leakage at 30 degrees C was due to an increase in the extent of reversible surface aggregation at the lower temperature. Experiments employing fluorescein-labeled pardaxin demonstrated reversible aggregation of the peptide in suspension and within the membrane, and exchange of the peptide between liposomes. In summary, our experimental and theoretical results support reversible surface aggregation as the mechanism of pore formation by pardaxin

    Critical behaviour of the Random--Bond Ashkin--Teller Model, a Monte-Carlo study

    Full text link
    The critical behaviour of a bond-disordered Ashkin-Teller model on a square lattice is investigated by intensive Monte-Carlo simulations. A duality transformation is used to locate a critical plane of the disordered model. This critical plane corresponds to the line of critical points of the pure model, along which critical exponents vary continuously. Along this line the scaling exponent corresponding to randomness ϕ=(α/ν)\phi=(\alpha/\nu) varies continuously and is positive so that randomness is relevant and different critical behaviour is expected for the disordered model. We use a cluster algorithm for the Monte Carlo simulations based on the Wolff embedding idea, and perform a finite size scaling study of several critical models, extrapolating between the critical bond-disordered Ising and bond-disordered four state Potts models. The critical behaviour of the disordered model is compared with the critical behaviour of an anisotropic Ashkin-Teller model which is used as a refference pure model. We find no essential change in the order parameters' critical exponents with respect to those of the pure model. The divergence of the specific heat CC is changed dramatically. Our results favor a logarithmic type divergence at TcT_{c}, ClogLC\sim \log L for the random bond Ashkin-Teller and four state Potts models and CloglogLC\sim \log \log L for the random bond Ising model.Comment: RevTex, 14 figures in tar compressed form included, Submitted to Phys. Rev.

    Energy-landscape network approach to the glass transition

    Full text link
    We study the energy-landscape network of Lennard-Jones clusters as a model of a glass forming system. We find the stable basins and the first order saddles connecting them, and identify them with the network nodes and links, respectively. We analyze the network properties and model the system's evolution. Using the model, we explore the system's response to varying cooling rates, and reproduce many of the glass transition properties. We also find that the static network structure gives rise to a critical temperature where a percolation transition breaks down the space of configurations into disconnected components. Finally, we discuss the possibility of studying the system mathematically with a trap-model generalized to networks.Comment: 4 pages, 6 figure

    On distributions of functionals of anomalous diffusion paths

    Full text link
    Functionals of Brownian motion have diverse applications in physics, mathematics, and other fields. The probability density function (PDF) of Brownian functionals satisfies the Feynman-Kac formula, which is a Schrodinger equation in imaginary time. In recent years there is a growing interest in particular functionals of non-Brownian motion, or anomalous diffusion, but no equation existed for their PDF. Here, we derive a fractional generalization of the Feynman-Kac equation for functionals of anomalous paths based on sub-diffusive continuous-time random walk. We also derive a backward equation and a generalization to Levy flights. Solutions are presented for a wide number of applications including the occupation time in half space and in an interval, the first passage time, the maximal displacement, and the hitting probability. We briefly discuss other fractional Schrodinger equations that recently appeared in the literature.Comment: 25 pages, 4 figure

    Percolation and cluster Monte Carlo dynamics for spin models

    Get PDF
    A general scheme for devising efficient cluster dynamics proposed in a previous letter [Phys.Rev.Lett. 72, 1541 (1994)] is extensively discussed. In particular the strong connection among equilibrium properties of clusters and dynamic properties as the correlation time for magnetization is emphasized. The general scheme is applied to a number of frustrated spin model and the results discussed.Comment: 17 pages LaTeX + 16 figures; will appear in Phys. Rev.

    Enhanced Membrane Pore Formation through High-Affinity Targeted Antimicrobial Peptides

    Get PDF
    Many cationic antimicrobial peptides (AMPs) target the unique lipid composition of the prokaryotic cell membrane. However, the micromolar activities common for these peptides are considered weak in comparison to nisin, which follows a targeted, pore-forming mode of action. Here we show that AMPs can be modified with a high-affinity targeting module, which enables membrane permeabilization at low concentration. Magainin 2 and a truncated peptide analog were conjugated to vancomycin using click chemistry, and could be directed towards specific membrane embedded receptors both in model membrane systems and whole cells. Compared with untargeted vesicles, a gain in permeabilization efficacy of two orders of magnitude was reached with large unilamellar vesicles that included lipid II, the target of vancomycin. The truncated vancomycin-peptide conjugate showed an increased activity against vancomycin resistant Enterococci, whereas the full-length conjugate was more active against a targeted eukaryotic cell model: lipid II containing erythrocytes. This study highlights that AMPs can be made more selective and more potent against biological membranes that contain structures that can be targeted

    Waist circumference as a vital sign in clinical practice: a Consensus Statement from the IAS and ICCR Working Group on Visceral Obesity

    Get PDF
    Despite decades of unequivocal evidence that waist circumference provides both independent and additive information to BMI for predicting morbidity and risk of death, this measurement is not routinely obtained in clinical practice. This Consensus Statement proposes that measurements of waist circumference afford practitioners with an important opportunity to improve the management and health of patients. We argue that BMI alone is not sufficient to properly assess or manage the cardiometabolic risk associated with increased adiposity in adults and provide a thorough review of the evidence that will empower health practitioners and professional societies to routinely include waist circumference in the evaluation and management of patients with overweight or obesity. We recommend that decreases in waist circumference are a critically important treatment target for reducing adverse health risks for both men and women. Moreover, we describe evidence that clinically relevant reductions in waist circumference can be achieved by routine, moderate-intensity exercise and/or dietary interventions. We identify gaps in the knowledge, including the refinement of waist circumference threshold values for a given BMI category, to optimize obesity risk stratification across age, sex and ethnicity. We recommend that health professionals are trained to properly perform this simple measurement and consider it as an important 'vital sign' in clinical practice

    Connecting Peptide Physicochemical and Antimicrobial Properties by a Rational Prediction Model

    Get PDF
    The increasing rate in antibiotic-resistant bacterial strains has become an imperative health issue. Thus, pharmaceutical industries have focussed their efforts to find new potent, non-toxic compounds to treat bacterial infections. Antimicrobial peptides (AMPs) are promising candidates in the fight against antibiotic-resistant pathogens due to their low toxicity, broad range of activity and unspecific mechanism of action. In this context, bioinformatics' strategies can inspire the design of new peptide leads with enhanced activity. Here, we describe an artificial neural network approach, based on the AMP's physicochemical characteristics, that is able not only to identify active peptides but also to assess its antimicrobial potency. The physicochemical properties considered are directly derived from the peptide sequence and comprise a complete set of parameters that accurately describe AMPs. Most interesting, the results obtained dovetail with a model for the AMP's mechanism of action that takes into account new concepts such as peptide aggregation. Moreover, this classification system displays high accuracy and is well correlated with the experimentally reported data. All together, these results suggest that the physicochemical properties of AMPs determine its action. In addition, we conclude that sequence derived parameters are enough to characterize antimicrobial peptides

    Antimicrobial Peptides and Skin: A Paradigm of Translational Medicine

    Get PDF
    Antimicrobial peptides (AMPs) are small, cationic, amphiphilic peptides with broad-spectrum microbicidal activity against both bacteria and fungi. In mammals, AMPs form the first line of host defense against infections and generally play an important role as effector agents of the innate immune system. The AMP era was born more than 6 decades ago when the first cationic cyclic peptide antibiotics, namely polymyxins and tyrothricin, found their way into clinical use. Due to the good clinical experience in the treatment of, for example, infections of mucus membranes as well as the subsequent understanding of mode of action, AMPs are now considered for treatment of inflammatory skin diseases and for improving healing of infected wounds. Based on the preclinical findings, including pathobiochemistry and molecular medicine, targeted therapy strategies are developed and first results indicate that AMPs influence processes of diseased skin. Importantly, in contrast to other antibiotics, AMPs do not seem to propagate the development of antibiotic-resistant micro-organisms. Therefore, AMPs should be tested in clinical trials for their efficacy and tolerability in inflammatory skin diseases and chronic wounds. Apart from possible fields of application, these peptides appear suited as an example of the paradigm of translational medicine for skin diseases which is today seen as a `two-way road' - from bench to bedside and backwards from bedside to bench. Copyright (c) 2012 S. Karger AG, Base
    corecore