45 research outputs found

    An increase in food production in Europe could dramatically affect farmland biodiversity

    Get PDF
    Conversion of semi-natural habitats, such as field margins, fallows, hedgerows, grassland, woodlots and forests, to agricultural land could increase agricultural production and help meet rising global food demand. Yet, the extent to which such habitat loss would impact biodiversity and wild species is unknown. Here we survey species richness for four taxa (vascular plants, earthworms, spiders, wild bees) and agricultural yield across a range of arable, grassland, mixed, horticulture, permanent crop, for organic and non-organic agricultural land on 169 farms across 10 European regions. We find that semi-natural habitats currently constitute 23% of land area with 49% of species unique to these habitats. We estimate that conversion of semi-natural land that achieves a 10% increase in agricultural production will have the greatest impact on biodiversity in arable systems and the least impact in grassland systems, with organic practices having better species retention than non-organic practices. Our findings will help inform sustainable agricultural development

    Rhinosinusitis derived Staphylococcal enterotoxin B possibly associates with pathogenesis of ulcerative colitis

    Get PDF
    BACKGROUND: During clinical practice, we noticed that some patients with both ulcerative colitis (UC) and chronic rhinosinusitis (CRS) showed amelioration of UC after treatment of CRS. This study was designed to identify a possible association between CRS and UC. METHODS: Thirty-two patients with both CRS and UC received treatment with functional endoscopic sinus surgery (FESS) for CRS. Clinical symptom scores for CRS and UC, as well as serum levels of anti-Staphylococcal enterotoxin B (SEB) were evaluated at week 0 and week 12. Sinus wash fluid SEB content was measured with enzyme-linked immunosorbent assay (ELISA). The surgically removed tissues were cultured to identify growth of Staphylococcus. aureus (S. aureus). Immunohistochemistry was employed to identify anti-SEB positive cells in the colonic mucosa. Colonic biopsies were obtained and incubated with SEB. Mast cell activation in the colonic mucosa in response to incubation with SEB was observed with electron microscopy and immunoassay. RESULTS: The clinical symptom scores of CRS and UC severe scores (UCSS) were significantly reduced in the UC-CRS patients after FESS. The number of cultured S. aureus colonies from the surgically removed sinus mucosa significantly correlated with the decrease in UCSS. High levels of SEB were detected in the sinus wash fluids of the patients with UC-CRS. Histamine and tryptase release was significantly higher in the culture supernate in the patients with UC-CRS than the patients with UC-only and normal controls. Anti-SEB positive cells were located in the colonic mucosa. CONCLUSION: The pathogenesis of UC in some patients may be associated with their pre-existing CRS by a mechanism of swallowing sinusitis-derived SEB. We speculate that SEB initiates inappropriate immune reactions and inflammation in the colonic mucosa that further progresses to UC

    An increase in food production in Europe could dramatically affect farmland biodiversity

    Get PDF
    Conversion of semi-natural habitats, such as field margins, fallows, hedgerows, grassland, woodlots and forests, to agricultural land could increase agricultural production and help meet rising global food demand. Yet, the extent to which such habitat loss would impact biodiversity and wild species is unknown. Here we survey species richness for four taxa (vascular plants, earthworms, spiders, wild bees) and agricultural yield across a range of arable, grassland, mixed, horticulture, permanent crop, for organic and non-organic agricultural land on 169 farms across 10 European regions. We find that semi-natural habitats currently constitute 23% of land area with 49% of species unique to these habitats. We estimate that conversion of semi-natural land that achieves a 10% increase in agricultural production will have the greatest impact on biodiversity in arable systems and the least impact in grassland systems, with organic practices having better species retention than non-organic practices. Our findings will help inform sustainable agricultural development

    Nutrient translocation in the xylem of popular - diurnal variations and spatial distribution along the shoot axis

    No full text
    This investigation shows diurnal variations in the xylem sap composition of poplar (Populus tremula x P. alba). All major macronutrients reached a maximum concentration in the first half of the light period and decreased to the middle of the night. The relative abundance of the nutrients did not change during the day. The sap flow, which responded very fast to the environmental changes (2.2-fold increase within 10-20 min of illumination), reached a maximum value in the second half of the light period. Transpiration (and photosynthesis) was constant throughout the light phase. The calculated translocation rates displayed a maximum in the first half of the light period and therefore did not fit the time course of sap flow. During the night, translocation rates were 63-69% lower than the maximum. The regulation of nutrient translocation is discussed taking the active xylem loading into account. The axial distribution located the nitrate assimilation in younger leaves and storage of nitrate (and other macronutrients) in older leaves. Nitrate and potassium concentrations in the xylem sap did not change along the plant axis. However, the sap flow was greater in younger shoot sections than in older sections. We assume that the greater demand for nitrate in the younger shoot section was satisfied via an increased volume flow rather an increased nitrate concentration

    Determination of the Thermal Load Distribution in Internal Traverse Grinding using a Geometric-Kinematic Simulation

    Get PDF
    During grinding processes, numerous grains interact with the workpiece material producing mechanical and thermal loads on the surface. In the field of thermal simulation of grinding processes, a widely used approach is to substitute numerous cutting edges by a single moving distributed heat source of a specific geometrical shape referring to the theory of Carslaw and Jaeger. This heat source is then moved across the modelled workpiece according to the specific kinematics of the grinding process. The geometrical shape of the substituted heat source can usually be determined using different approaches, e.g., predefined distribution functions or, more precisely, based on measurements of the shear stress within the contact zone. Referring to the state of the art, it is not possible to measure the shear stress within the contact zone during internal traverse grinding with roughing and finishing zone because of its very complex engagement conditions and the non-rectangular shape of its contact zone. In this work, a novel approach to determining a heat source distribution based on a geometric-kinematic simulation for internal traverse grinding is presented. This simulation identifies the ideal geometrical interaction of workpiece and grinding wheel. For this purpose, the specific material removal rate for each grain is calculated and accumulated with respect to the contact zone resulting in a three-dimensional thermal load distribution. This heat source can be used in finite element simulations to determine the thermal load on the workpiece. (C) 2015 The Authors. Published by Elsevier B.V

    Exchange bias like effect induced by domain walls in FeGd/FeSn bilayers

    No full text
    A study of exchange bias phenomenon in ferrimagnetic /ferromagnetic FeGd/ FeSn bilayers is presented. The amorphous FeSn and FeGd alloys have been grown by co-evaporation. Specific growth conditions allow to induce an uniaxial anisotropy in both alloys in a parallel direction. After saturation of the bilayers under a positive field, the hysteresis loop of one of the layer is shifted towards a positive field H E . The sign of the exchange bias field H E is shown to be due to the antiferromagnetic coupling between the net magnetizations of both alloys. The field H E is studied as a function of the thickness of each layer and of the temperature. Using ac-susceptibility measurements and polarized neutron reflectometry, it is shown that the reversal of magnetization of the bilayers is dominated by the presence of a domain wall at the interface. This exchange bias system is shown to act as a potential well for the magnetic domain wall. Within this assumption and thanks to a precise magnetic characterization of each alloy, the evolution of H E with the thickness of the layers is well reproduced using simple one-dimensional analytical models for the domain wall or a more elaborate numerical approach. Copyright Springer-Verlag Berlin/Heidelberg 2003

    Internes Employer Branding

    No full text

    Capture of dense core vesicles at synapses by JNK-dependent phosphorylation of Synaptotagmin-4.

    No full text
    Delivery of neurotrophins and neuropeptides via long-range trafficking of dense core vesicles (DCVs) from the cell soma to nerve terminals is essential for synapse modulation and circuit function. But the mechanism by which transiting DCVs are captured at specific sites is unknown. Here, we discovered that Synaptotagmin-4 (Syt4) regulates the capture and spatial distribution of DCVs in hippocampal neurons. We found that DCVs are highly mobile and undergo long-range translocation but switch directions only at the distal ends of axons, revealing a circular trafficking pattern. Phosphorylation of serine 135 of Syt4 by JNK steers DCV trafficking by destabilizing Syt4-Kif1A interaction, leading to a transition from microtubule-dependent DCV trafficking to capture at en passant presynaptic boutons by actin. Furthermore, neuronal activity increased DCV capture via JNK-dependent phosphorylation of the S135 site of Syt4. Our data reveal a mechanism that ensures rapid, site-specific delivery of DCVs to synapses
    corecore