666 research outputs found

    Chandra and optical/IR observations of CXOJ1415.2+3610, a massive, newly discovered galaxy cluster at z~1.5

    Full text link
    (Abridged) We report the discovery of CXO J1415.2+3610, a distant (z~1.5) galaxy cluster serendipitously detected in a deep, high-resolution Chandra observation targeted to study the cluster WARP J1415.1+3612 at z=1.03. This is the highest-z cluster discovered with Chandra so far. Moreover, the total exposure time of 280 ks with ACIS-S provides the deepest X-ray observation currently achieved on a cluster at z>1.5. We perform an X-ray spectral fit of the extended emission of the intracluster medium (ICM) with XSPEC, and we detect at a 99.5% confidence level the rest frame 6.7-6.9 keV Iron K_\alpha line complex, from which we obtain z_X=1.46\pm0.025. The analysis of the z-3.6\mu m color-magnitude diagram shows a well defined sequence of red galaxies within 1' from the cluster X-ray emission peak with a color range [5 < z-3.6 \mu m < 6]. The photometric redshift obtained by spectral energy distribution (SED) fitting is z_phot=1.47\pm 0.25. After fixing the redshift to z=1.46, we perform the final spectral analysis and measure the average gas temperature with a 20% error, kT=5.8^{+1.2}_{-1.0} keV, and the Fe abundance Z_Fe = 1.3_{-0.5}^{+0.8}Z_\odot. We fit the background subtracted surface brightness with a single beta--model out to 35" and derive the deprojected electron density profile. The ICM mass is 1.09_{-0.2}^{+0.3}\times 10^{13} M_\odot within 300 kpc. The total mass is M_{2500}= 8.6_{-1.7}^{+2.1} \times 10 ^{13} M_\odot for R_{2500}=(220\pm 55) kpc. Extrapolating the profile at larger radii we find M_{500}= 2.1_{-0.5}^{+0.7} \times 10 ^{14} M_\odot for R_{500} = 510_{-50}^{+55}$ kpc. This analysis establishes CXOJ1415.2+3610 as one of the best characterized distant galaxy clusters based on X-ray data alone.Comment: 12 pages, 9 figures, A\&A in press, minor modifications in the tex

    Next Generation Cosmology: Constraints from the Euclid Galaxy Cluster Survey

    Get PDF
    We study the characteristics of the galaxy cluster samples expected from the European Space Agency's Euclid satellite and forecast constraints on cosmological parameters describing a variety of cosmological models. The method used in this paper, based on the Fisher Matrix approach, is the same one used to provide the constraints presented in the Euclid Red Book (Laureijs et al.2011). We describe the analytical approach to compute the selection function of the photometric and spectroscopic cluster surveys. Based on the photometric selection function, we forecast the constraints on a number of cosmological parameter sets corresponding to different extensions of the standard LambdaCDM model. The dynamical evolution of dark energy will be constrained to Delta w_0=0.03 and Delta w_a=0.2 with free curvature Omega_k, resulting in a (w_0,w_a) Figure of Merit (FoM) of 291. Including the Planck CMB covariance matrix improves the constraints to Delta w_0=0.02, Delta w_a=0.07 and a FoM=802. The amplitude of primordial non-Gaussianity, parametrised by f_NL, will be constrained to \Delta f_NL ~ 6.6 for the local shape scenario, from Euclid clusters alone. Using only Euclid clusters, the growth factor parameter \gamma, which signals deviations from GR, will be constrained to Delta \gamma=0.02, and the neutrino density parameter to Delta Omega_\nu=0.0013 (or Delta \sum m_\nu=0.01). We emphasise that knowledge of the observable--mass scaling relation will be crucial to constrain cosmological parameters from a cluster catalogue. The Euclid mission will have a clear advantage in this respect, thanks to its imaging and spectroscopic capabilities that will enable internal mass calibration from weak lensing and the dynamics of cluster galaxies. This information will be further complemented by wide-area multi-wavelength external cluster surveys that will already be available when Euclid flies. [Abridged]Comment: submitted to MNRA

    CLASH-VLT: Testing the Nature of Gravity with Galaxy Cluster Mass Profiles

    Get PDF
    We use high-precision kinematic and lensing measurements of the total mass profile of the dynamically relaxed galaxy cluster MACS J1206.2-0847 at z=0.44z=0.44 to estimate the value of the ratio η=Ψ/Φ\eta=\Psi/\Phi between the two scalar potentials in the linear perturbed Friedmann-Lemaitre-Robertson-Walker metric.[...] Complementary kinematic and lensing mass profiles were derived from exhaustive analyses using the data from the Cluster Lensing And Supernova survey with Hubble (CLASH) and the spectroscopic follow-up with the Very Large Telescope (CLASH-VLT). Whereas the kinematic mass profile tracks only the time-time part of the perturbed metric (i.e. only Φ\Phi), the lensing mass profile reflects the contribution of both time-time and space-space components (i.e. the sum Φ+Ψ\Phi+\Psi). We thus express η\eta as a function of the mass profiles and perform our analysis over the radial range 0.5 Mpc≤r≤r200=1.96 Mpc0.5\,Mpc\le r\le r_{200}=1.96\,Mpc. Using a spherical Navarro-Frenk-White mass profile, which well fits the data, we obtain \eta(r_{200})=1.01\,_{-0.28}^{+0.31} at the 68\% C.L. We discuss the effect of assuming different functional forms for mass profiles and of the orbit anisotropy in the kinematic reconstruction. Interpreting this result within the well-studied f(R)f(R) modified gravity model, the constraint on η\eta translates into an upper bound to the interaction length (inverse of the scalaron mass) smaller than 2 Mpc. This tight constraint on the f(R)f(R) interaction range is however substantially relaxed when systematic uncertainties in the analysis are considered. Our analysis highlights the potential of this method to detect deviations from general relativity, while calling for the need of further high-quality data on the total mass distribution of clusters and improved control on systematic effects.Comment: 18 pages, 3 figures, submitted to JCA

    Interfacing polymeric scaffolds with primary pancreatic ductal adenocarcinoma cells to develop 3D cancer models

    Get PDF
    We analyzed the interactions between human primary cells from pancreatic ductal adenocarcinoma (PDAC) and polymeric scaffolds to develop 3D cancer models useful for mimicking the biology of this tumor. Three scaffold types based on two biocompatible polymeric formulations, such as poly(vinyl alcohol)/gelatin (PVA/G) mixture and poly(ethylene oxide terephthalate)/poly(butylene terephthalate) (PEOT/PBT) copolymer, were obtained via different techniques, namely, emulsion and freeze-drying, compression molding followed by salt leaching, and electrospinning. In this way, primary PDAC cells interfaced with different pore topographies, such as sponge-like pores of different shape and size or nanofiber interspaces. The aim of this study was to investigate the influence played by the scaffold architecture over cancerous cell growth and function. In all scaffolds, primary PDAC cells showed good viability and synthesized tumor-specific metalloproteinases (MMPs) such as MMP-2, and MMP-9. However, only sponge-like pores, obtained via emulsion-based and salt leaching-based techniques allowed for an organized cellular aggregation very similar to the native PDAC morphological structure. Differently, these cell clusters were not observed on PEOT/PBT electrospun scaffolds. MMP-2 and MMP-9, as active enzymes, resulted to be increased in PVA/G and PEOT/PBT sponges, respectively. These findings suggested that spongy scaffolds supported the generation of pancreatic tumor models with enhanced aggressiveness. In conclusion, primary PDAC cells showed diverse behaviors while interacting with different scaffold types that can be potentially exploited to create stage-specific pancreatic cancer models likely to provide new knowledge on the modulation and drug susceptibility of MMPs

    CLASH-VLT: The inner slope of the MACS J1206.2-0847 mass density profile

    Full text link
    The inner slope gammaDM of the dark matter (DM) density profile of cosmological halos carries information about the properties of DM and/or baryonic processes affecting the halo gravitational potential. Cold DM cosmological simulations predict steep inner slopes, gammaDM>~1. We test this prediction on the MACS J1206.2-0847 cluster at redshift z=0.44, whose DM density profile was claimed to be cored at the center. We determine the cluster DM density profile from 2 kpc from the cluster center to the virial radius (~2 Mpc), using the velocity distribution of ~500 cluster galaxies and the velocity dispersion profile of the Brightest Cluster Galaxy (BCG), obtained from VIMOS@VLT and MUSE@VLT data. We solve the Jeans equation of dynamical equilibrium using an upgraded version of the MAMPOSSt method. The total mass profile is modeled as a sum of a generalized-NFW profile that describes the DM component, allowing for a free inner slope of the density profile, a Jaffe profile that describes the BCG stellar mass component, and a non-parametric baryonic profile that describes the sum of the remaining galaxy stellar mass and of the hot intra-cluster gas mass. Our total mass profile is in remarkable agreement with independent determinations based on X-ray observations and strong lensing. We find gammaDM=0.7 -0.1 +0.2 (68% confidence levels), consistent with predictions from recent LambdaCDM cosmological numerical simulations.Comment: Submitted to ApJ on June, 1st 2023. 14 pages, 9 figure

    An Improved Calculation of the Non-Gaussian Halo Mass Function

    Full text link
    The abundance of collapsed objects in the universe, or halo mass function, is an important theoretical tool in studying the effects of primordially generated non-Gaussianities on the large scale structure. The non-Gaussian mass function has been calculated by several authors in different ways, typically by exploiting the smallness of certain parameters which naturally appear in the calculation, to set up a perturbative expansion. We improve upon the existing results for the mass function by combining path integral methods and saddle point techniques (which have been separately applied in previous approaches). Additionally, we carefully account for the various scale dependent combinations of small parameters which appear. Some of these combinations in fact become of order unity for large mass scales and at high redshifts, and must therefore be treated non-perturbatively. Our approach allows us to do this, and to also account for multi-scale density correlations which appear in the calculation. We thus derive an accurate expression for the mass function which is based on approximations that are valid over a larger range of mass scales and redshifts than those of other authors. By tracking the terms ignored in the analysis, we estimate theoretical errors for our result and also for the results of others. We also discuss the complications introduced by the choice of smoothing filter function, which we take to be a top-hat in real space, and which leads to the dominant errors in our expression. Finally, we present a detailed comparison between the various expressions for the mass functions, exploring the accuracy and range of validity of each.Comment: 28 pages, 13 figures; v2: text reorganized and some figured modified for clarity, results unchanged, references added. Matches version published in JCA

    CLASH-VLT: A Highly Precise Strong Lensing Model of the Galaxy Cluster RXC J2248.7-4431 (Abell S1063) and Prospects for Cosmography

    Get PDF
    We perform a comprehensive study of the total mass distribution of the galaxy cluster RXCJ2248 (z=0.348z=0.348) with a set of high-precision strong lensing models, which take advantage of extensive spectroscopic information on many multiply lensed systems. In the effort to understand and quantify inherent systematics in parametric strong lensing modelling, we explore a collection of 22 models where we use different samples of multiple image families, parametrizations of the mass distribution and cosmological parameters. As input information for the strong lensing models, we use the CLASH HST imaging data and spectroscopic follow-up observations, carried out with the VIMOS and MUSE spectrographs, to identify bona-fide multiple images. A total of 16 background sources, over the redshift range 1.0−6.11.0-6.1, are multiply lensed into 47 images, 24 of which are spectroscopically confirmed and belong to 10 individual sources. The cluster total mass distribution and underlying cosmology in the models are optimized by matching the observed positions of the multiple images on the lens plane. We show that with a careful selection of a sample of spectroscopically confirmed multiple images, the best-fit model reproduces their observed positions with a rms of 0.30.3 in a fixed flat Λ\LambdaCDM cosmology, whereas the lack of spectroscopic information lead to biases in the values of the model parameters. Allowing cosmological parameters to vary together with the cluster parameters, we find (at 68%68\% confidence level) Ωm=0.25−0.16+0.13\Omega_m=0.25^{+0.13}_{-0.16} and w=−1.07−0.42+0.16w=-1.07^{+0.16}_{-0.42} for a flat Λ\LambdaCDM model, and Ωm=0.31−0.13+0.12\Omega_m=0.31^{+0.12}_{-0.13} and ΩΛ=0.38−0.27+0.38\Omega_\Lambda=0.38^{+0.38}_{-0.27} for a universe with w=−1w=-1 and free curvature. Using toy models mimicking the overall configuration of RXCJ2248, we estimate the impact of the line of sight mass structure on the positional rms to be 0.3±0.10.3\pm 0.1.(ABRIDGED)Comment: 23 pages, 13 figures, accepted for publication in A&
    • …
    corecore