6,935 research outputs found
In Situ Compatibilization of Biopolymer Ternary Blends by Reactive Extrusion with Low-Functionality Epoxy-Based Styrene Acrylic Oligomer
[EN] The present study reports on the use of low-functionality epoxy-based styrene¿acrylic oligomer (ESAO) to compatibilize immiscible ternary blends made of poly(3-hydroxybutyrate-co-3-hydroxyvalerate) (PHBV), polylactide (PLA), and poly(butylene adipate-co-terephthalate) (PBAT). The addition during melt processing of low-functionality ESAO at two parts per hundred resin (phr) of biopolymer successfully changed the soften inclusion phase in the blend system to a thinner morphology, yielding biopolymer ternary blends with higher mechanical ductility and also improved oxygen barrier performance. The compatibilization achieved was ascribed to the in situ formation of a newly block terpolymer, i.e. PHBVb- PLA-b-PBAT, which was produced at the blend interface by the reaction of the multiple epoxy groups present in ESAO with the functional terminal groups of the biopolymers. This chemical reaction was mainly linear due to the inherently low functionality of ESAO and the more favorable reactivity of the epoxy groups with the carboxyl groups of the biopolymers, which avoided the formation of highly branched and/or cross-linked structures and thus facilitated the films processability. Therefore, the reactive blending of biopolymers at different mixing ratios with low-functionality ESAO represents a straightforward methodology to prepare sustainable plastics at industrial scale with different physical properties that can be of interest in, for instance, food packaging applications.This research was funded by the EU H2020 project YPACK (Reference number 773872) and by the Spanish Ministry of Science, Innovation, and Universities (MICIU) with project numbers MAT2017-84909-C2-2-R and AGL2015-63855-C2-1-R. L. Quiles-Carrillo wants to thank the Spanish Ministry of Education, Culture, and Sports (MECD) for financial support through his FPU Grant Number FPU15/03812. Torres-Giner also acknowledges the MICIU for his Juan de la Cierva contract (IJCI-2016-29675).Quiles-Carrillo, L.; Montanes, N.; Lagaron, J.; Balart, R.; Torres-Giner, S. (2019). In Situ Compatibilization of Biopolymer Ternary Blends by Reactive Extrusion with Low-Functionality Epoxy-Based Styrene Acrylic Oligomer. Journal of Polymers and the Environment. 27(1):84-96. https://doi.org/10.1007/s10924-018-1324-2S8496271Babu RP, O’Connor K, Seeram R (2013) Prog Biomater 2:8Torres-Giner S, Torres A, Ferrándiz M, Fombuena V, Balart R (2017) J Food Saf 37:e12348Quiles-Carrillo L, Montanes N, Boronat T, Balart R, Torres-Giner S (2017) Polym Test 61:421Zakharova E, Alla A, Martínez A, De Ilarduya S, Muñoz-Guerra (2015) RSC Adv 5:46395Steinbüchel A, Valentin HE (1995) FEMS Microbiol Lett 128:219McChalicher CWJ, Srienc F (2007) J Biotechnol 132:296Reis KC, Pereira J, Smith AC, Carvalho CWP, Wellner N, Yakimets I (2008) J Food Eng 89:361Vink ETH, Davies S (2015) Ind Biotechnol 11:167John RP, Nampoothiri KM, Pandey A (2006) Process Biochem 41:759Madhavan Nampoothiri K, Nair NR, John RP (2010) Biores Technol 101:8493Garlotta D (2001) J Polym Environ 9:63Lim LT, Auras R, Rubino M (2008) Prog Polym Sci 33:820Quiles-Carrillo L, Montanes N, Sammon C, Balart R, Torres-Giner S (2018) Ind Crops Prod 111:878Quiles-Carrillo L, Blanes-Martínez MM, Montanes N, Fenollar O, Torres-Giner S, Balart R (2018) Eur Polym J 98:402Witt U, Müller R-J, Deckwer W-D (1997) J Environ Polym Degrad 5:81Siegenthaler KO, Künkel A, Skupin G, Yamamoto M (2012) Ecoflex® and Ecovio®: biodegradable, performance-enabling plastics. In: Rieger B, Künkel A, Coates GW, Reichardt R, Dinjus E, Zevaco TA (eds) Synthetic biodegradable polymers. Springer, Berlin Heidelberg, p 91Jiang L, Wolcott MP, Zhang J (2006) Biomacromol 7:199Brandelero RPH, Yamashita F, Grossmann MVE (2010) Carbohyd Polym 82:1102Muthuraj R, Misra M, Mohanty AK (2014) J Polym Environ 22:336Porter RS, Wang L-H (1992) Polymer 33(10): 2019Koning C, Van Duin M, Pagnoulle C, Jerome R (1998) Prog Polym Sci 23:707Muthuraj R, Misra M, Mohanty AK (2017) J Appl Polym Sci 135:45726Ryan AJ (2002) Nat Mater 1:8Wu D, Zhang Y, Yuan L, Zhang M, Zhou W (2010) J Polym Sci Part B 48:756Kim CH, Cho KY, Choi EJ, Park JK (2000) J Appl Polym Sci 77:226Supthanyakul R, Kaabbuathong N, Chirachanchai S (2016) Polymer 105:1Na Y-H, He Y, Shuai X, Kikkawa Y, Doi Y, Inoue Y (2002) Biomacromolecules 3:1179Zeng J-B, Li K-A, Du A-K (2015) RSC Adv 5:32546Xanthos M, Dagli SS (1991) Polym Eng Sci 31:929Sundararaj U, Macosko CW (1995) Macromolecules 28:2647Milner ST, Xi H (1996) J Rheol 40:663Villalobos M, Awojulu A, Greeley T, Turco G, Deeter G (2006) Energy 31:3227Torres-Giner S, Montanes N, Boronat T, Quiles-Carrillo L, Balart R (2016) Eur Polym J 84:693Lehermeier HJ, Dorgan JR (2001) Polym Eng Sci 41:2172Liu B, Xu Q (2013) J Mater Sci Chem Eng 1:9Eslami H, Kamal MR (2013) J Appl Polym Sci 129:2418Loontjens T, Pauwels K, Derks F, Neilen M, Sham CK, Serné M (1997) J Appl Polym Sci 65:1813Ojijo V, Ray SS (2015) Polymer 80:1Frenz V, Scherzer D, Villalobos M, Awojulu AA, Edison M, Van Der Meer R (2008) Multifunctional polymers as chain extenders and compatibilizers for polycondensates and biopolymers. In: Technical papers, regional technical conference—society of plastics engineers, p. 3/1678Utracki LA (2002) Can J Chem Eng 80:1008Al-Itry R, Lamnawar K, Maazouz A (2012) Polym Degrad Stab 97:1898Lin S, Guo W, Chen C, Ma J, Wang B (2012) Mater Des (1980–2015) 36: 604Arruda LC, Magaton M, Bretas RES, Ueki MM (2015) Polym Test 43:27Wang Y, Fu C, Luo Y, Ruan C, Zhang Y, Fu Y (2010) J Wuhan Univ Technol Mater Sci Ed 25:774Wei D, Wang H, Xiao H, Zheng A, Yang Y (2015) Carbohyd Polym 123:275Abdelwahab MA, Taylor S, Misra M, Mohanty AK (2015) Macromol Mater Eng 300:299Sun Q, Mekonnen T, Misra M, Mohanty AK (2016) J Polym Environ 24:23Torres-Giner S, Gimeno-Alcañiz JV, Ocio MJ, Lagaron JM (2011) J Appl Polym Sci 122:914Miyata T, Masuko T (1998) Polymer 39:5515Muthuraj R, Misra M, Mohanty AK (2015) J Appl Polym Sci 132:42189Ren J, Fu H, Ren T, Yuan W (2009) Carbohyd Polym 77:576Torres-Giner S, Montanes N, Fenollar O, García-Sanoguera D, Balart R (2016) Mater Des 108:648Jamshidian M, Tehrany EA, Imran M, Jacquot M, Desobry S (2010) Compr Rev Food Sci Food Saf 9:552Savenkova L, Gercberga Z, Nikolaeva V, Dzene A, Bibers I, Kalnin M (2000) Process Biochem 35:573Costa ARM, Almeida TG, Silva SML, Carvalho LH, Canedo EL (2015) Polym Test 42:115Zhang K, Mohanty AK, Misra M (2012) ACS Appl Mater Interfaces 4:3091Zhang N, Wang Q, Ren J, Wang L (2009) J Mater Sci 44:250Chinsirikul W, Rojsatean J, Hararak B, Kerddonfag N, Aontee A, Jaieau K, Kumsang P, Sripethdee C (2015) Packag Technol Sci 28:741Auras R, Harte B, Selke S (2004) J Appl Polym Sci 92:1790Sanchez-Garcia MD, Gimenez E, Lagaron JM (2008) Carbohyd Polym 71:235Sanchez-Garcia MD, Gimenez E, Lagaron JM (2007) J Plast Film Sheeting 23:133Lagaron JM (2011) Multifunctional and nanoreinforced polymers for food packaging. In: Multifunctional and nanoreinforced polymers for food packaging. Woodhead Publishing, Cambridge, p
Expression of a barley cystatin gene in maize enhances resistance against phytophagous mites by altering their cysteine-proteases
Phytocystatins are inhibitors of cysteine-proteases from plants putatively involved in plant defence based on their capability of inhibit heterologous enzymes. We have previously characterised the whole cystatin gene family members from barley (HvCPI-1 to HvCPI-13). The aim of this study was to assess the effects of barley cystatins on two phytophagous spider mites, Tetranychus urticae and Brevipalpus chilensis. The determination of proteolytic activity profile in both mite species showed the presence of the cysteine-proteases, putative targets of cystatins, among other enzymatic activities. All barley cystatins, except HvCPI-1 and HvCPI-7, inhibited in vitro mite cathepsin L- and/or cathepsin B-like activities, HvCPI-6 being the strongest inhibitor for both mite species. Transgenic maize plants expressing HvCPI-6 protein were generated and the functional integrity of the cystatin transgene was confirmed by in vitro inhibitory effect observed against T. urticae and B. chilensis protein extracts. Feeding experiments impaired on transgenic lines performed with T. urticae impaired mite development and reproductive performance. Besides, a significant reduction of cathepsin L-like and/or cathepsin B-like activities was observed when the spider mite fed on maize plants expressing HvCPI-6 cystatin. These findings reveal the potential of barley cystatins as acaricide proteins to protect plants against two important mite pests
Enzyme adaptation to habitat thermal legacy shapes the thermal plasticity of marine microbiomes
Microbial communities respond to temperature with physiological adaptation and compositional turnover. Whether thermal selection of enzymes explains marine microbiome plasticity in response to temperature remains unresolved. By quantifying the thermal behaviour of seven functionally-independent enzyme classes (esterase, extradiol dioxygenase, phosphatase, beta-galactosidase, nuclease, transaminase, and aldo-keto reductase) in native proteomes of marine sediment microbiomes from the Irish Sea to the southern Red Sea, we record a significant effect of the mean annual temperature (MAT) on enzyme response in all cases. Activity and stability profiles of 228 esterases and 5 extradiol dioxygenases from sediment and seawater across 70 locations worldwide validate this thermal pattern. Modelling the esterase phase transition temperature as a measure of structural flexibility confirms the observed relationship with MAT. Furthermore, when considering temperature variability in sites with non-significantly different MATs, the broadest range of enzyme thermal behaviour and the highest growth plasticity of the enriched heterotrophic bacteria occur in samples with the widest annual thermal variability. These results indicate that temperature-driven enzyme selection shapes microbiome thermal plasticity and that thermal variability finely tunes such processes and should be considered alongside MAT in forecasting microbial community thermal response
Study of the D^0 \to pi^-pi^+pi^-pi^+ decay
Using data from the FOCUS (E831) experiment at Fermilab, we present new
measurements for the Cabibbo-suppressed decay mode . We measure the branching ratio .
An amplitude analysis has been performed, a first for this channel, in order to
determine the resonant substructure of this decay mode. The dominant component
is the decay , accounting for 60% of the decay rate.
The second most dominant contribution comes from the decay , with a fraction of 25%. We also study the
line shape and resonant substructure. Using the helicity formalism for the
angular distribution of the decay , we measure
a longitudinal polarization of %.Comment: 38 pages, 8 figures. accepted for publication in Physical Review
A Study of D0 --> K0(S) K0(S) X Decay Channels
Using data from the FOCUS experiment (FNAL-E831), we report on the decay of
mesons into final states containing more than one . We present
evidence for two Cabibbo favored decay modes, and
, and measure their combined branching fraction
relative to to be = 0.0106
0.0019 0.0010. Further, we report new measurements of
=
0.0179 0.0027 0.0026, = 0.0144 0.0032 0.0016,
and = 0.0208 0.0035 0.0021 where the first error is
statistical and the second is systematic.Comment: 11 pages, 3 figures, typos correcte
Multi-messenger astronomy with INTEGRAL
At the time of defining the science objectives of the INTernational Gamma-Ray
Astrophysics Laboratory (INTEGRAL), such a rapid and spectacular development of
multi-messenger astronomy could not have been predicted, with new impulsive
phenomena becoming accessible through different channels.
Neutrino telescopes have routinely detected energetic neutrino events coming
from unknown cosmic sources since 2013. Gravitational wave detectors opened a
novel window on the sky in 2015 with the detection of the merging of two black
holes and in 2017 with the merging of two neutron stars, followed by signals in
the full electromagnetic range. Finally, since 2007, radio telescopes detected
extremely intense and short burst of radio waves, known as Fast Radio Bursts
(FRBs) whose origin is for most cases extragalactic, but enigmatic.
The exceptionally robust and versatile design of the INTEGRAL mission has
allowed researchers to exploit data collected not only with the pointed
instruments, but also with the active cosmic-ray shields of the main
instruments to detect impulses of gamma-rays in coincidence with unpredictable
phenomena. The full-sky coverage, mostly unocculted by the Earth, the large
effective area, the stable background, and the high duty cycle (85%) put
INTEGRAL in a privileged position to give a major contribution to
multi-messenger astronomy.
In this review, we describe how INTEGRAL has provided upper limits on the
gamma-ray emission from black-hole binary mergers, detected a short gamma-ray
burst in coincidence with a binary neutron star merger, contributed to define
the spectral energy distribution of a blazar associated with a neutrino event,
set upper limits on impulsive and steady gamma-ray emission from cosmological
FRBs, and detected a magnetar flare associated with fast radio bursting
emission.Comment: Accepted for publication on New Astronomy Reviews as invited
contributio
Search for CP violation in D0 and D+ decays
A high statistics sample of photoproduced charm particles from the FOCUS
(E831) experiment at Fermilab has been used to search for CP violation in the
Cabibbo suppressed decay modes D+ to K-K+pi+, D0 to K-K+ and D0 to pi-pi+. We
have measured the following CP asymmetry parameters: A_CP(K-K+pi+) = +0.006 +/-
0.011 +/- 0.005, A_CP(K-K+) = -0.001 +/- 0.022 +/- 0.015 and A_CP(pi-pi+) =
+0.048 +/- 0.039 +/- 0.025 where the first error is statistical and the second
error is systematic. These asymmetries are consistent with zero with smaller
errors than previous measurements.Comment: 12 pages, 4 figure
- …