129 research outputs found
The place-cell representation of volumetric space in rats
Place cells are spatially modulated neurons found in the hippocampus that underlie spatial memory and navigation: how these neurons represent 3D space is crucial for a full understanding of spatial cognition. We wirelessly recorded place cells in rats as they explored a cubic lattice climbing frame which could be aligned or tilted with respect to gravity. Place cells represented the entire volume of the mazes: their activity tended to be aligned with the maze axes, and when it was more difficult for the animals to move vertically the cells represented space less accurately and less stably. These results demonstrate that even surface-dwelling animals represent 3D space and suggests there is a fundamental relationship between environment structure, gravity, movement and spatial memory
Volumetric spatial behaviour in rats reveals the anisotropic organisation of navigation
We investigated how access to the vertical dimension influences the natural exploratory and foraging behaviour of rats. Using high-accuracy three-dimensional tracking of position in two- and three-dimensional environments, we sought to determine (i) how rats navigated through the environments with respect to gravity, (ii) where rats chose to form their home bases in volumetric space, and (iii) how they navigated to and from these home bases. To evaluate how horizontal biases may affect these behaviours, we compared a 3D maze where animals preferred to move horizontally to a different 3D configuration where all axes were equally energetically costly to traverse. Additionally, we compared home base formation in two-dimensional arenas with and without walls to the three-dimensional climbing mazes. We report that many behaviours exhibited by rats in horizontal spaces naturally extend to fully volumetric ones, such as home base formation and foraging excursions. We also provide further evidence for the strong differentiation of the horizontal and vertical axes: rats showed a horizontal movement bias, they formed home bases mainly in the bottom layers of both mazes and they generally solved the vertical component of return trajectories before and faster than the horizontal component. We explain the bias towards horizontal movements in terms of energy conservation, while the locations of home bases are explained from an information gathering view as a method for correcting self-localisation
A PSO-based Global MPPT technique for Distributed PV Power Generation
International audienc
Maximum Power Point Tracking for Cascaded PV-Converter Modules Using Two-Stage Particle Swarm Optimization
The paper presents a novel two-stage particle swarm optimization (PSO) for the maximum power point tracking (MPPT) control of a PV system consisting of cascaded PV-converter modules, under partial shading conditions (PSCs). In this scheme, the grouping method of the shuffled frog leaping algorithm (SFLA) is incorporated with the basic PSO algorithm, ensuring fast and accurate searching of the global extremum. An adaptive speed factor is also introduced to improve its convergence speed. A PWM algorithm enabling permuted switching of the PV sources is applied. The method enables this PV system to achieve the maximum power generation for any number of PV and converter modules. Simulation studies of the proposed MPPT scheme are performed on a system having two chained PV buck-converter modules and a dc-ac H-bridge connected at its terminals for supplying an AC load. The results show that this type of PV system allows each module to achieve the maximum power generation according its illumination level without affecting the others, and the proposed new control method gives significantly higher power output compared with the conventional P&O and PSO methods
Polyoxometalates in the Hofmeister series
We propose a simple experimental procedure based on the cloud point measurement of a non-ionic surfactant as a tool for (i) estimating the super-chaotropic behaviour of polyoxometalates (POMs) and for (ii) establishing a classification of POMs according to their affinity towards polar surfaces
Epigenetics in autoimmune disorders: highlights of the 10th Sjögren's syndrome symposium
During the 10th International Symposium on Sjögren's Syndrome held in Brest, France, from October 1-3, 2009 (http://www.sjogrensymposium-brest2009.org), the creation of an international epigenetic autoimmune group has been proposed to establish gold standards and to launch collaborative studies. During this "epigenetics session", leading experts in the field presented and discussed the most recent developments of this topic in Sjögren's Syndrome research. The "Brest epigenetic task force" was born and has scheduled a meeting in Ljubljana, Slovenia during the 7th Autoimmunity congress in May 2010.The following is a report of that session
Association of the DNMT3B -579G>T polymorphism with risk of thymomas in patients with myasthenia gravis
Increasing evidence suggests a contribution of epigenetic processes in promoting cancer and autoimmunity. Myasthenia gravis (MG) is an autoimmune disease mediated, in approximately 80% of the patients, by antibodies against the nicotinic acetylcholine receptor (AChR+). Moreover, epithelial tumours (thymomas) are present in about 10-20% of the patients, and there is indication that changes in DNA methylation might contribute to the risk and progression of thymomas. However, the role of epigenetics in MG is still not completely clarified. In the present study we investigated if a common polymorphism (-579G>T: rs1569686) in the promoter of the DNMT3B gene coding for the DNA methyltransferase 3B, an enzyme that mediates DNA methylation, increases the risk to develop MG or MG-associated thymomas. The study polymorphism was selected based on recent reports and a literature meta-analysis suggesting association with increased risk of various types of cancer. We screened 324 AChR+ MG patients (140 males and 184 females, mean age 56.0 \ub1 16.5 years) and 735 healthy matched controls (294 males and 441 females, mean age 57.3 \ub1 15.6 years). 94 of the total MG patients had a thymoma. While there was no association with the whole cohort of MG patients, we found a statistically significant association of the DNMT3B-579T allele (OR = 1.51; 95% CI=1.1-2.1, P = 0.01) and the TT homozygous genotype (OR = 2.59; 95% CI=1.4-4.9, P = 0.006) with the risk of thymoma. No association was observed in MG patients without thymoma, even after stratification into clinical subtypes. Present results suggest that the DNMT3B-579T allele might contribute to the risk of developing thymoma in MG patients, particularly in homozygous TT subjects
Capillary Regeneration in Scleroderma: Stem Cell Therapy Reverses Phenotype?
BACKGROUND. Scleroderma is an autoimmune disease with a characteristic vascular pathology. The vasculopathy associated with scleroderma is one of the major contributors to the clinical manifestations of the disease. METHODOLOGY/PRINCIPAL FINDINGS. We used immunohistochemical and mRNA in situ hybridization techniques to characterize this vasculopathy and showed with morphometry that scleroderma has true capillary rarefaction. We compared skin biopsies from 23 scleroderma patients and 24 normal controls and 7 scleroderma patients who had undergone high dose immunosuppressive therapy followed by autologous hematopoietic cell transplant. Along with the loss of capillaries there was a dramatic change in endothelial phenotype in the residual vessels. The molecules defining this phenotype are: vascular endothelial cadherin, a supposedly universal endothelial marker required for tube formation (lost in the scleroderma tissue), antiangiogenic interferon α (overexpressed in the scleroderma dermis) and RGS5, a signaling molecule whose expression coincides with the end of branching morphogenesis during development and tumor angiogenesis (also overexpressed in scleroderma skin. Following high dose immunosuppressive therapy, patients experienced clinical improvement and 5 of the 7 patients with scleroderma had increased capillary counts. It was also observed in the same 5 patients, that the interferon α and vascular endothelial cadherin had returned to normal as other clinical signs in the skin regressed, and in all 7 patients, RGS5 had returned to normal. CONCLUSION/SIGNIFICANCE. These data provide the first objective evidence for loss of vessels in scleroderma and show that this phenomenon is reversible. Coordinate changes in expression of three molecules already implicated in angiogenesis or anti-angiogenesis suggest that control of expression of these three molecules may be the underlying mechanism for at least the vascular component of this disease. Since rarefaction has been little studied, these data may have implications for other diseases characterized by loss of capillaries including hypertension, congestive heart failure and scar formation.Scleroderma Research Foundatio
Interaction between proximal objects and distal cues in controlling hippocampal place cell activity.
- …