5,407 research outputs found

    Development and application of a catchment scale pesticide fate and transport model for use in drinking water risk assessment

    Get PDF
    This paper describes the development and application of IMPT (Integrated Model for Pesticide Transport), a parameter-efficient tool for predicting diffuse-source pesticide concentrations in surface waters used for drinking water supply. The model was applied to a small UK headwater catchment with high frequency (8 h) pesticide monitoring data and to five larger catchments (479–1653 km2) with sampling approximately every 14 days. Model performance was good for predictions of both flow (Nash Sutcliffe Efficiency generally > 0.59 and PBIAS < 10%) and pesticide concentrations, although low sampling frequency in the larger catchments is likely to mask the true episodic nature of exposure. The computational efficiency of the model, along with the fact that most of its parameters can be derived from existing national soil property data mean that it can be used to rapidly predict pesticide exposure in multiple surface water resources to support operational and strategic risk assessments

    Classical T Tauri-like Outflow Activity in the Brown Dwarf Mass Regime

    Get PDF
    Over the last number of years spectroscopic studies have strongly supported the assertion that protostellar accretion and outflow activity persists to the lowest masses. In this paper we present the results of our latest investigation of brown dwarf (BD) outflow activity and report on the discovery of two new outflows. Here ISO-Oph 32 is shown to drive a blue-shifted outflow with a radial velocity of 10-20 km/s and spectro-astrometric analysis constrains the position angle of this outflow to 240 +/- 7 degrees. The BD candidate ISO-Cha1 217 is found to have a bipolar outflow bright in several key forbidden lines (radial velocity = -20 km/s, +40 km/s) and with a PA of 190-210 degrees. A striking feature of the ISO-Cha1 217 outflow is the strong asymmetry between the red and blue-shifted lobes. This asymmetry is revealed in the relative brightness of the two lobes (red-shifted lobe is brighter), the factor of two difference in radial velocity (the red-shifted lobe is faster) and the difference in the electron density (again higher in the red lobe). Such asymmetries are common in jets from low mass protostars and the observation of a marked asymmetry at such a low mass supports the idea that BD outflow activity is scaled down from low mass protostellar activity. In addition to presenting these new results, a comprehensive comparison is made between BD outflow activity and jets launched by CTTSs. In particular, the application of current methods for investigating the excitation conditions and mass loss rates in CTT jets to BD spectra is explored.Comment: Accepted by Astrophysical Journa

    Physical parameters of the Cen X-3 system

    Get PDF
    Photographic spectra of Cen X-3 show that the primary star has a spectral type near 06.5 with weak, variable emission at wavelength 4640 and 4686. No orbital motion of the emission or absorption lines is detected; for the latter the upper limit is approximately + or - 50 km/s. Analysis of the available data indicates that the primary is a factor of 2-3 less massive than expected from normal evolutionary models while the X-ray source has a solar mass near 1.5

    Accretion-ejection connection in the young brown dwarf candidate ISO-Cha1 217

    Get PDF
    As the number of observed brown dwarf outflows is growing it is important to investigate how these outflows compare to the well studied jets from young stellar objects. A key point of comparison is the relationship between outflow and accretion activity and in particular the ratio between the mass outflow and accretion rates (M˙out\dot{M}_{out}/M˙acc\dot{M}_{acc}). The brown dwarf candidate ISO-ChaI 217 was discovered by our group, as part of a spectro-astrometric study of brown dwarfs, to be driving an asymmetric outflow with the blue-shifted lobe having a position angle of \sim 20^{\circ}. The aim here is to further investigate the properties of ISO-ChaI 217, the morphology and kinematics of its outflow, and to better constrain (M˙out\dot{M}_{out}/M˙acc\dot{M}_{acc}). The outflow is spatially resolved in the [SII]λλ6716,6731[SII]\lambda \lambda 6716,6731 lines and is detected out to \sim 1\farcs6 in the blue-shifted lobe and ~ 1" in the red-shifted lobe. The asymmetry between the two lobes is confirmed although the velocity asymmetry is less pronounced with respect to our previous study. Using thirteen different accretion tracers we measure log(M˙acc\dot{M}_{acc}) [Msun_{sun}/yr]= -10.6 ±\pm 0.4. As it was not possible to measure the effect of extinction on the ISO-ChaI 217 outflow M˙out\dot{M}_{out} was derived for a range of values of Av_{v}, up to a value of Av_{v} = 2.5 mag estimated for the source extinction. The logarithm of the mass outflow (M˙out\dot{M}_{out}) was estimated in the range -11.7 to -11.1 for both jets combined. Thus M˙out\dot{M}_{out}/M˙acc\dot{M}_{acc} [\Msun/yr] lies below the maximum value predicted by magneto-centrifugal jet launching models. Finally, both model fitting of the Balmer decrements and spectro-astrometric analysis of the Hα\alpha line show that the bulk of the H I emission comes from the accretion flow.Comment: accepted by Astronomy & Astrophysic

    High-stakes lies: Verbal and nonverbal cues to deception in public appeals for help with missing or murdered relatives

    Get PDF
    This is an Accepted Manuscript of an article published by Taylor & Francis in Psychiatry, Psychology and Law on 23/9/2013 available online: http://wwww.tandfonline.com/10.1080/13218719.2013.839931Low ecological validity is a common limitation in deception studies. The present study investigated the real life, high stake context of public appeals for help with missing or murdered relatives. Behaviours which discriminated between honest and deceptive appeals included some previously identified in research on high stakes lies (deceptive appeals contained more equivocal language, gaze aversion, head shaking, and speech errors), and a number of previously unidentified behaviours (honest appeals contained more references to norms of emotion/behaviour, more expressions of hope of finding the missing relative alive, more expressions of positive emotion towards the relative, more expressions of concern/pain, and an avoidance of brutal language). Case by case analyses yielded 78% correct classifications. Implications are discussed with reference to the importance of using ecologically valid data in deception studies, the context specific nature of some deceptive behaviours, and social interactionist, and individual behavioural profile, accounts of cues to deception.ESRC grant number [ES/I90316X/1

    National Inquiry on Bushfire Mitigation and Management

    Get PDF
    Bushfires are an inherent part of the Australian environment. We cannot prevent them, but we can minimise the risks they pose to life, property and infrastructure, production systems, and the environment. Australia has a large and very capable force of volunteer and career firefighters, advanced firefighting technologies, and significant firefighting resources. But the geographical scale of our country, the large and expanding rural–urban interface, and the potential for rapid bushfire development and spread under adverse weather conditions mean that individual Australians cannot rely solely on fire agencies to protect their lives and property from bushfires. Bushfires have a fundamental and irreplaceable role in sustaining many of Australia’s natural ecosystems and ecological processes and are a valuable tool for achieving land management objectives. However, if they are too frequent or too infrequent, too severe or too mild, or mistimed, they can erode ecosystem health and biodiversity and compromise other land management goals. We have been learning to live with fire since the first Australians arrived on our continent. We need to continue, and enrich, that learning process in contemporary circumstances and be able to adapt our planning and responses to change. This report seeks to help all Australians meet these challenges

    Passive magnetic shielding in MRI-Linac systems.

    Get PDF
    Passive magnetic shielding refers to the use of ferromagnetic materials to redirect magnetic field lines away from vulnerable regions. An application of particular interest to the medical physics community is shielding in MRI systems, especially integrated MRI-linear accelerator (MRI-Linac) systems. In these systems, the goal is not only to minimize the magnetic field in some volume, but also to minimize the impact of the shield on the magnetic fields within the imaging volume of the MRI scanner. In this work, finite element modelling was used to assess the shielding of a side coupled 6 MV linac and resultant heterogeneity induced within the 30 cm diameter of spherical volume (DSV) of a novel 1 Tesla split bore MRI magnet. A number of different shield parameters were investigated; distance between shield and magnet, shield shape, shield thickness, shield length, openings in the shield, number of concentric layers, spacing between each layer, and shield material. Both the in-line and perpendicular MRI-Linac configurations were studied. By modifying the shield shape around the linac from the starting design of an open ended cylinder, the shielding effect was boosted by approximately 70% whilst the impact on the magnet was simultaneously reduced by approximately 10%. Openings in the shield for the RF port and beam exit were substantial sources of field leakage; however it was demonstrated that shielding could be added around these openings to compensate for this leakage. Layering multiple concentric shield shells was highly effective in the perpendicular configuration, but less so for the in-line configuration. Cautious use of high permeability materials such as Mu-metal can greatly increase the shielding performance in some scenarios. In the perpendicular configuration, magnetic shielding was more effective and the impact on the magnet lower compared with the in-line configuration

    Dynamic keyhole: a novel method to improve MR images in the presence of respiratory motion for real-time MRI

    Get PDF
    PURPOSE: In this work, the authors present a novel magnetic resonance imaging reconstruction method to improve the quality of MR images in the presence of respiratory motion for real-time thoracic image-guided radiotherapy. METHODS: This new reconstruction method is called dynamic keyhole and utilizes a library of previously acquired, peripheral k-space datasets from the same (or similar) respiratory state in conjunction with central k-space datasets acquired in real-time. Internal or external respiratory signals are utilized to sort, match, and combine the two separate peripheral and central k-space datasets with respect to respiratory displacement, thereby reducing acquisition time and improving image quality without respiratory-related artifacts. In this study, the dynamic keyhole, conventional keyhole, and zero-filling methods were compared to full k-space acquisition (ground truth) for 60 coronal datasets acquired from 15 healthy human subjects. RESULTS: For the same image-quality difference from the ground-truth image, the dynamic keyhole method reused 79% of the prior peripheral phase-encoding lines, while the conventional keyhole reused 73% and zero-filling 63% (p-value < 0.0001), corresponding to faster acquisition speed of dynamic keyhole for real-time imaging applications. CONCLUSIONS: This study demonstrates that the dynamic keyhole method is a promising technique for clinical applications such as image-guided radiotherapy requiring real-time MR monitoring of the thoracic region. Based on the results from this study, the dynamic keyhole method could increase the temporal resolution by a factor of five compared with full k-space methods

    Characterizing the Rigidly Rotating Magnetosphere Stars HD 345439 and HD 23478

    Get PDF
    The SDSS III APOGEE survey recently identified two new σ\sigma Ori E type candidates, HD 345439 and HD 23478, which are a rare subset of rapidly rotating massive stars whose large (kGauss) magnetic fields confine circumstellar material around these systems. Our analysis of multi-epoch photometric observations of HD 345439 from the KELT, SuperWASP, and ASAS surveys reveals the presence of a \sim0.7701 day period in each dataset, suggesting the system is amongst the faster known σ\sigma Ori E analogs. We also see clear evidence that the strength of H-alpha, H I Brackett series lines, and He I lines also vary on a \sim0.7701 day period from our analysis of multi-epoch, multi-wavelength spectroscopic monitoring of the system from the APO 3.5m telescope. We trace the evolution of select emission line profiles in the system, and observe coherent line profile variability in both optical and infrared H I lines, as expected for rigidly rotating magnetosphere stars. We also analyze the evolution of the H I Br-11 line strength and line profile in multi-epoch observations of HD 23478 from the SDSS-III APOGEE instrument. The observed periodic behavior is consistent with that recently reported by Sikora and collaborators in optical spectra.Comment: Accepted in ApJ

    Stochastic Background Search Correlating ALLEGRO with LIGO Engineering Data

    Full text link
    We describe the role of correlation measurements between the LIGO interferometer in Livingston, LA, and the ALLEGRO resonant bar detector in Baton Rouge, LA, in searches for a stochastic background of gravitational waves. Such measurements provide a valuable complement to correlations between interferometers at the two LIGO sites, since they are sensitive in a different, higher, frequency band. Additionally, the variable orientation of the ALLEGRO detector provides a means to distinguish gravitational wave correlations from correlated environmental noise. We describe the analysis underway to set a limit on the strength of a stochastic background at frequencies near 900 Hz using ALLEGRO data and data from LIGO's E7 Engineering Run.Comment: 8 pages, 2 encapsulated PostScript figures, uses IOP class files, submitted to the proceedings of the 7th Gravitational Wave Data Analysis Workshop (which will be published in Classical and Quantum Gravity
    corecore